Home On closed subgroups of precompact groups
Article
Licensed
Unlicensed Requires Authentication

On closed subgroups of precompact groups

  • Salvador Hernández , Dieter Remus and F. Javier Trigos-Arrieta EMAIL logo
Published/Copyright: September 28, 2022

Abstract

It is a theorem of W. W. Comfort and K. A. Ross that if 𝐺 is a subgroup of a compact Abelian group and 𝑆 denotes the continuous homomorphisms from 𝐺 to the one-dimensional torus, then the topology on 𝐺 is the initial topology given by 𝑆. Assume that 𝐻 is a subgroup of 𝐺. We study how the choice of 𝑆 affects the topological placement and properties of 𝐻 in 𝐺. Among other results, we have made significant progress toward the solution of the following specific questions. How many totally bounded group topologies does 𝐺 admit such that 𝐻 is a closed (dense) subgroup? If C S denotes the poset of all subgroups of 𝐺 that are 𝑆-closed, ordered by inclusion, does C S have a greatest (resp. smallest) element? We say that a totally bounded (topological, resp.) group is an SC group (topologically simple, resp.) if all its subgroups are closed (if 𝐺 and { e } are its only possible closed normal subgroups, resp.) In addition, we investigate the following questions. How many SC-(topologically simple totally bounded, resp.) group topologies does an arbitrary Abelian group 𝐺 admit?


Dedicated to María Jesús Chasco on the occasion of her 65th birthday


Award Identifier / Grant number: MTM/PID2019-106529GB-I00

Funding source: Universitat Jaume I

Award Identifier / Grant number: UJI-B2019-06

Funding statement: The first author’s research was partially supported by the Spanish Ministerio de Economía y Competitividad, grant MTM/PID2019-106529GB-I00 (AEI/FEDER, EU) and by the Universitat Jaume I, grant UJI-B2019-06.

Acknowledgements

We are very grateful to the referee for her/his helpful comments.

  1. Communicated by: George Willis

References

[1] S. Berhanu, W. W. Comfort and J. D. Reid, Counting subgroups and topological group topologies, Pacific J. Math. 116 (1985), no. 2, 217–241. 10.2140/pjm.1985.116.217Search in Google Scholar

[2] E. Boschi and D. Dikranjan, Essential subgroups of topological groups, Comm. Algebra 28 (2000), no. 10, 4941–4970. 10.1080/00927870008827133Search in Google Scholar

[3] N. Bourbaki, Elements of Mathematics. General Topology. Part 1, Hermann, Paris, 1966. Search in Google Scholar

[4] T. P. Chalebgwa and S. A. Morris, Topological transcendental fields, Axioms 118 (2022), 1–5. 10.3390/axioms11030118Search in Google Scholar

[5] M. J. Chasco, X. Domínguez and M. Tkachenko, Duality properties of bounded torsion topological abelian groups, J. Math. Anal. Appl. 448 (2017), no. 2, 968–981. 10.1016/j.jmaa.2016.11.029Search in Google Scholar

[6] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Stud. Texts 39, Cambridge University, Cambridge, 1997. 10.1017/CBO9781139173131Search in Google Scholar

[7] W. W. Comfort, Topological groups, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam (1984), 1143–1263. 10.1016/B978-0-444-86580-9.50027-6Search in Google Scholar

[8] W. W. Comfort and D. Dikranjan, On the poset of totally dense subgroups of compact groups, Topology Proc. 24 (1999), 103–127. Search in Google Scholar

[9] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Grundlehren Math. Wiss. 211, Springer, New York, 1974. 10.1007/978-3-642-65780-1Search in Google Scholar

[10] W. W. Comfort and D. Remus, Long chains of Hausdorff topological group topologies, J. Pure Appl. Algebra 70 (1991), no. 1–2, 53–72. 10.1016/0022-4049(91)90006-NSearch in Google Scholar

[11] W. W. Comfort and D. Remus, Pseudocompact refinements of compact group topologies, Math. Z. 215 (1994), no. 3, 337–346. 10.1007/BF02571718Search in Google Scholar

[12] W. W. Comfort and D. Remus, Intervals of totally bounded group topologies, Papers on General Topology and Applications (Gorham 1995), Ann. New York Acad. Sci. 806, New York Academy of Sciences, New York (1996), 121–129. 10.1111/j.1749-6632.1996.tb49163.xSearch in Google Scholar

[13] W. W. Comfort and D. Remus, Long chains of topological group topologies—a continuation, Topology Appl. 75 (1997), no. 1, 51–79. 10.1016/S0166-8641(96)00078-8Search in Google Scholar

[14] W. W. Comfort and D. Remus, Non-abelian pseudocompact groups, Axioms 5 (2016), 1–17. 10.3390/axioms5010002Search in Google Scholar

[15] W. W. Comfort and L. C. Robertson, Proper pseudocompact extensions of compact abelian group topologies, Proc. Amer. Math. Soc. 86 (1982), no. 1, 173–178. 10.1090/S0002-9939-1982-0663891-4Search in Google Scholar

[16] W. W. Comfort and L. C. Robertson, Cardinality constraints for pseudocompact and for totally dense subgroups of compact topological groups, Pacific J. Math. 119 (1985), no. 2, 265–285. 10.2140/pjm.1985.119.265Search in Google Scholar

[17] W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283–291. 10.4064/fm-55-3-283-291Search in Google Scholar

[18] W. W. Comfort and V. Saks, Countably compact groups and finest totally bounded topologies, Pacific J. Math. 49 (1973), no. 1, 33–44. 10.2140/pjm.1973.49.33Search in Google Scholar

[19] W. W. Comfort and T. Soundararajan, Pseudocompact group topologies and totally dense subgroups, Pacific J. Math. 100 (1982), no. 1, 61–84. 10.2140/pjm.1982.100.61Search in Google Scholar

[20] D. Dikranjan and L. Stojanov, 𝐴-classes of minimal abelian groups, Ann. Univ. Sofia Fac. Math. Méc. 71 (1976/77), no. 2, 53–62. Search in Google Scholar

[21] D. N. Dikranjan, I. R. Prodanov and L. N. Stoyanov, Topological Groups: Characters, Dualities and Minimal Group Topologies, Monogr. Textbooks Pure Appl. Math. 130, Marcel Dekker, New York, 1990. Search in Google Scholar

[22] L. Fuchs, Infinite Abelian Groups. Vol. I, Pure Appl. Math. 36, Academic Press, New York, 1970. Search in Google Scholar

[23] L. Gillman and M. Jerison, Rings of Continuous Functions, Grad. Texts in Math. 43, Springer, New York, 1976. Search in Google Scholar

[24] D. L. Grant, Arbitrary powers of the roots of unity are minimal Hausdorff topological groups, Topology Proc. 4 (1979), no. 1, 103–108. Search in Google Scholar

[25] S. Hernández and S. Macario, Dual properties in totally bounded abelian groups, Arch. Math. (Basel) 80 (2003), no. 3, 271–283. 10.1007/s00013-003-0460-6Search in Google Scholar

[26] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups. Integration Theory, Group Representations, Grundlehren Math. Wiss. 115, Springer, New York, 1963. Search in Google Scholar

[27] S. Janakiraman and T. Soundararajan, Totally bounded group topologies and closed subgroups, Pacific J. Math. 101 (1982), no. 1, 123–132. 10.2140/pjm.1982.101.123Search in Google Scholar

[28] S. Kakutani, On cardinal numbers related with a compact Abelian group, Proc. Imp. Acad. Tokyo 19 (1943), 366–372. 10.3792/pia/1195573431Search in Google Scholar

[29] M. A. Khan, The existence of totally dense subgroups in LCA groups, Pacific J. Math. 112 (1984), no. 2, 383–390. 10.2140/pjm.1984.112.383Search in Google Scholar

[30] J. O. Kiltinen, On the number of field topologies on an infinite field, Proc. Amer. Math. Soc. 40 (1973), 30–36. 10.1090/S0002-9939-1973-0318118-4Search in Google Scholar

[31] A. Lévy, Basic Set Theory, Springer, Berlin, 1979. 10.1007/978-3-662-02308-2Search in Google Scholar

[32] B. Pospísǐl, Remark on bicompact spaces, Ann. of Math. (2) 38 (1937), 845–846. 10.2307/1968840Search in Google Scholar

[33] D. Remus, Zur Struktur des Verbandes der Gruppentopologien, Dissertation, Universität Hannover, Hannover, 1983. Search in Google Scholar

[34] D. Remus, The number of T 2 -precompact group topologies on free groups, Proc. Amer. Math. Soc. 95 (1985), no. 2, 315–319. 10.1090/S0002-9939-1985-0801346-7Search in Google Scholar

[35] D. Remus, Die Anzahl von T 2 -präkompakten Gruppentopologien auf unendlichen abelschen Gruppen, Rev. Roumaine Math. Pures Appl. 31 (1986), no. 9, 803–806. Search in Google Scholar

[36] D. Remus, Minimal and precompact group topologies on free groups, J. Pure Appl. Algebra 70 (1991), no. 1–2, 147–157. 10.1016/0022-4049(91)90014-SSearch in Google Scholar

[37] D. Remus, Anzahlbestimmungen von gewissen präkompakten bzw. nicht-präkompakten hausdorffschen Gruppentopologien, Habilitationsschrift, Universität Hannover, Hannover, 1995. Search in Google Scholar

[38] S. V. Rychkov and A. A. Fomin, Abelian groups with a countable number of subgroups, Abelian Groups and Modules 10 (in Russian), Tomsk. Gos. Univ., Tomsk (1991), 99–105. Search in Google Scholar

[39] J. Saxl and J. S. Wilson, A note on powers in simple groups, Math. Proc. Cambridge Philos. Soc. 122 (1997), no. 1, 91–94. 10.1017/S030500419600165XSearch in Google Scholar

[40] T. Soundararajan, Classes of topological groups suggested by Galois theory, J. Pure Appl. Algebra 70 (1991), no. 1–2, 169–183. 10.1016/0022-4049(91)90016-USearch in Google Scholar

[41] A. Weil, Sur les Espaces à Strùcture Uniforme et sur la Topologie Générale, Publ. Math. Univ. Strasbourg, Hermann, Paris, 1937. Search in Google Scholar

Received: 2022-05-24
Revised: 2022-07-23
Published Online: 2022-09-28
Published in Print: 2023-05-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jgth-2022-0093/html
Scroll to top button