Home Multiscale polyethylene fiber – bacterial nanocellulose composites through combined laser fusion and bacterial in situ synthesis
Article
Licensed
Unlicensed Requires Authentication

Multiscale polyethylene fiber – bacterial nanocellulose composites through combined laser fusion and bacterial in situ synthesis

  • Samuel Schlicht EMAIL logo , Mara Wesinger , Anke Kaufmann , Uta Rösel , Dagmar Fischer and Dietmar Drummer
Published/Copyright: March 19, 2025
Become an author with De Gruyter Brill

Abstract

Ultra-high molecular weight polyethylene (UHMW-PE) fibers and bacterial nanocellulose (BNC) display exceptional mechanical properties alongside the outstanding tribological properties of UHMW-PE while showing unrestricted biocompatibility. For combining the intrinsic advantages of both materials, the present work demonstrates an approach that integrates the slurry-based laser fusion of PE-polyvinylpyrrolidone (PE-PVP) composites and the subsequent bacterial biosynthesis of nanocellulose. PE-PVP composites exhibiting a fraction of 10 % of UHMW-PE fibers were additively manufactured through the locally selective laser-based layer-wise evaporation and subsequent sintering of aqueous suspensions, yielding fiber composites with a water-soluble matrix. The in situ synthesis of bacterial nanocellulose exploits the gelling and dissolving of high-molecular PVP in aqueous media. By allowing for the infiltration of printed PE-PVP composites with nanocellulose-producing Komagataeibacter xylinus, a multiscale composite of polyethylene fibers and bacterial nanocellulose was obtained, corroborating the infiltration of micrometer-scale PE fibers with nanoscale cellulose fibers. Release experiments using methylene blue confirmed the potentials of PE-BNC composites for drug delivery applications, showing first order sigmoidal release kinetics.


Corresponding author: Samuel Schlicht, Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. S.S.: Conceptualization, Investigation, Methodology, Validation, Visualization, and Writing – Original Draft; M.W.: Writing – Original Draft, Investigation, Methodology; A.K.: Writing – Review and Editing; U.R.: Investigation; D.F.: Writing – Review and Editing, Funding Acquisition, D.D.: Writing – Review and Editing, Funding Acquisition.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflicts of interest.

  6. Research funding: None declared.

  7. Data availability: The data are available upon reasonable request from the corresponding author.

References

Ahrem, H., Pretzel, D., Endres, M., Conrad, D., Courseau, J., Müller, H., Jaeger, R., Kaps, C., Klemm, D.O., and Kinne, R.W. (2014). Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater. 10: 1341–1353, https://doi.org/10.1016/j.actbio.2013.12.004.Search in Google Scholar PubMed

Apelgren, P., Karabulut, E., Amoroso, M., Mantas, A., Martínez Ávila, H., Kölby, L., Kondo, T., Toriz, G., and Gatenholm, P. (2019). In vivo human cartilage formation in three-dimensional bioprinted constructs with a novel bacterial nanocellulose bioink. ACS Biomater. Sci. Eng. 5: 2482–2490, https://doi.org/10.1021/acsbiomaterials.9b00157.Search in Google Scholar PubMed

Arai, S., Tsunoda, S., Yamaguchi, A., and Ougizawa, T. (2018). Effects of short-glass-fiber content on material and part properties of poly(butylene terephthalate) processed by selective laser sintering. Addit. Manuf. 21: 683–693, https://doi.org/10.1016/j.addma.2018.04.019.Search in Google Scholar

Arai, S., Tsunoda, S., Yamaguchi, A., and Ougizawa, T. (2019). Effect of anisotropy in the build direction and laser-scanning conditions on characterization of short-glass-fiber-reinforced PBT for laser sintering. Opt Laser. Technol. 113: 345–356, https://doi.org/10.1016/j.optlastec.2019.01.012.Search in Google Scholar

Argel, S., Castaño, M., Jimenez, D.E., Rodríguez, S., Vallejo, M.J., Castro, C.I., and Osorio, M.A. (2022). Assessment of bacterial nanocellulose loaded with acetylsalicylic acid or povidone-iodine as bioactive dressings for skin and soft tissue infections. Pharmaceutics 14: 1661, https://doi.org/10.3390/pharmaceutics14081661.Search in Google Scholar PubMed PubMed Central

Bao, L., Tang, J., Hong, F.F., Lu, X., and Chen, L. (2020). Physicochemical properties and in vitro biocompatibility of three bacterial nanocellulose conduits for blood vessel applications. Carbohydr. Polym. 239: 116246, https://doi.org/10.1016/j.carbpol.2020.116246.Search in Google Scholar PubMed

Cañas-Gutiérrez, A., Martinez-Correa, E., Suárez-Avendaño, D., Arboleda-Toro, D., and Castro-Herazo, C. (2020). Influence of bacterial nanocellulose surface modification on calcium phosphates precipitation for bone tissue engineering. Cellulose 27: 10747–10763, https://doi.org/10.1007/s10570-020-03470-6.Search in Google Scholar

Cañas-Gutiérrez, A., Toro, L., Fornaguera, C., Borrós, S., Osorio, M., Castro-Herazo, C., and Arboleda-Toro, D. (2023). Biomineralization in three-dimensional scaffolds based on bacterial nanocellulose for bone tissue engineering: feature characterization and stem cell differentiation. Polymers 15: 2012, https://doi.org/10.3390/polym15092012.Search in Google Scholar PubMed PubMed Central

Chopra, H., Gandhi, S., Gautam, R.K., and Kamal, M.A. (2022). Bacterial nanocellulose based wound dressings: current and future prospects. Curr. Pharm. Des. 28: 570–580, https://doi.org/10.2174/1381612827666211021162828.Search in Google Scholar PubMed

de Mattos, I.B., Holzer, J.C.J., Tuca, A.-C., Groeber-Becker, F., Funk, M., Popp, D., Mautner, S., Birngruber, T., and Kamolz, L.-P. (2019). Uptake of PHMB in a bacterial nanocellulose-based wound dressing: a feasible clinical procedure. Burns 45: 898–904, https://doi.org/10.1016/j.burns.2018.10.023.Search in Google Scholar PubMed

Dufresne, A. (2012). Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge. Int. Polym. Process. 27: 557–564, https://doi.org/10.3139/217.2603.Search in Google Scholar

Greiner, S., Schlicht, S., and Drummer, D. (2021). Temperature field homogenization by fractal exposure strategies in laser sintering of polymers. In: Proceedings of the 17th Rapid.Tech 3D conference Erfurt, Germany, 22–23 June 2021. Carl Hanser Verlag GmbH & Co. KG, pp. 188–197.10.1007/978-3-446-47173-3_15Search in Google Scholar

Holzer, J.C.J., Tiffner, K., Kainz, S., Reisenegger, P., Bernardelli de Mattos, I., Funk, M., Lemarchand, T., Laaff, H., Bal, A., Birngruber, T., et al.. (2020). A novel human ex-vivo burn model and the local cooling effect of a bacterial nanocellulose-based wound dressing. Burns 46: 1924–1932, https://doi.org/10.1016/j.burns.2020.06.024.Search in Google Scholar PubMed

Jin, M., Chen, W., Li, Z., Zhang, Y., Zhang, M., and Chen, S. (2018). Patterned bacterial cellulose wound dressing for hypertrophic scar inhibition behavior. Cellulose 25: 6705–6717, https://doi.org/10.1007/s10570-018-2041-7.Search in Google Scholar

Klemm, D., Cranston, E.D., Fischer, D., Gama, M., Kedzior, S.A., Kralisch, D., Kramer, F., Kondo, T., Lindström, T., and Nietzsche, S. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater. Today 21: 720–748, https://doi.org/10.1016/j.mattod.2018.02.001.Search in Google Scholar

Kondo, T., Rytczak, P., and Bielecki, S. (2016). Chapter 4 – bacterial NanoCellulose characterization. In: Gama, M., Dourado, F., and Bielecki, S. (Eds.). Bacterial nanocellulose. Elsevier, Amsterdam, pp. 59–71.10.1016/B978-0-444-63458-0.00004-4Search in Google Scholar

Krontiras, P., Gatenholm, P., and Hägg, D.A. (2015). Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 103: 195–203, https://doi.org/10.1002/jbm.b.33198.Search in Google Scholar PubMed

Kroupa, M., Soos, M., and Kosek, J. (2017). Slip on particle surface as the possible origin of shear thinning in non-brownian suspensions. Phys. Chem. Chem. Phys. 19, https://doi.org/10.1039/C6CP07666A.Search in Google Scholar PubMed

Lanzl, L., Wudy, K., and Drummer, D. (2020). The effect of short glass fibers on the process behavior of polyamide 12 during selective laser beam melting. Polym. Test. 83: 106313, https://doi.org/10.1016/j.polymertesting.2019.106313.Search in Google Scholar

Lasseuguette, E., Roux, D., and Nishiyama, Y. (2008). Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15: 425–433, https://doi.org/10.1007/s10570-007-9184-2.Search in Google Scholar

Lee, K.-Y., Tammelin, T., Schulfter, K., Kiiskinen, H., Samela, J., and Bismarck, A. (2012). High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl. Mater. Interfaces 4: 4078–4086, https://doi.org/10.1021/am300852a.Search in Google Scholar PubMed

Lin, Y., Phan-Thien, N., and Khoo, B. (2015). Shear induced organization of particles in non-colloidal suspensions in steady shear flow. J. Non-Newtonian Fluid Mech. 223: 228, https://doi.org/10.1016/j.jnnfm.2015.07.006.Search in Google Scholar

Lin, L., Chen, L., Chen, G., Lu, C., and Hong, F.F. (2024). Effects of heterogeneous surface characteristics on hemocompatibility and cytocompatibility of bacterial nanocellulose. Carbohydr. Polym. 335: 122063, https://doi.org/10.1016/j.carbpol.2024.122063.Search in Google Scholar PubMed

Magda, R., Mansur, A., and Mansur, H. (2009). Characterization and accelerated ageing of UHMWPE used in orthopedic prosthesis by peroxide. Materials 2, https://doi.org/10.3390/ma2020562.Search in Google Scholar

Martínez Ávila, H., Schwarz, S., Feldmann, E.-M., Mantas, A., von Bomhard, A., Gatenholm, P., and Rotter, N. (2014). Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotechnol. 98: 7423–7435, https://doi.org/10.1007/s00253-014-5819-z.Search in Google Scholar PubMed

Maurer, K., Renkert, M., Duis, M., Weiss, C., Wessel, L.M., and Lange, B. (2022). Application of bacterial nanocellulose-based wound dressings in the management of thermal injuries: experience in 92 children. Burns 48: 608–614, https://doi.org/10.1016/j.burns.2021.07.002.Search in Google Scholar PubMed

Mohit, H. and Selvan, V.A.M. (2020). Effect of a novel chemical treatment on the physico-thermal properties of sugarcane nanocellulose fiber reinforced epoxy nanocomposites. Int. Polym. Process. 35: 211–220, https://doi.org/10.3139/217.3855.Search in Google Scholar

Moritz, S., Wiegand, C., Wesarg, F., Hessler, N., Müller, F.A., Kralisch, D., Hipler, U.-C., and Fischer, D. (2014). Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharm. 471: 45–55, https://doi.org/10.1016/j.ijpharm.2014.04.062.Search in Google Scholar PubMed

Müller, A., Ni, Z., Hessler, N., Wesarg, F., Müller, F.A., Kralisch, D., and Fischer, D. (2013). The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J. Pharm. Sci. 102: 579–592, https://doi.org/10.1002/jps.23385.Search in Google Scholar PubMed

Napavichayanun, S., Yamdech, R., and Aramwit, P. (2016). The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies. Arch. Dermatol. Res. 308: 123–132, https://doi.org/10.1007/s00403-016-1621-3.Search in Google Scholar PubMed

Osorio, M., Ortiz, I., Gañán, P., Naranjo, T., Zuluaga, R., van Kooten, T.G., and Castro, C. (2019). Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering. Mater. Sci. Eng. C 100: 697–705, https://doi.org/10.1016/j.msec.2019.03.045.Search in Google Scholar PubMed

Pasaribu, K.M., Mahendra, I.P., Karina, M., Masruchin, N., Sholeha, N.A., Gea, S., Gupta, A., Johnston, B., and Radecka, I. (2024). A review: current trends and future perspectives of bacterial nanocellulose-based wound dressings. Int. J. Biol. Macromol.: 135602, https://doi.org/10.1016/j.ijbiomac.2024.135602.Search in Google Scholar PubMed

Pötzinger, Y., Kralisch, D., and Fischer, D. (2017). Bacterial nanocellulose: the future of controlled drug delivery? Ther. Deliv. 8: 753–761, https://doi.org/10.4155/tde-2017-0059.Search in Google Scholar PubMed

Pötzinger, Y., Rahnfeld, L., Kralisch, D., and Fischer, D. (2019). Immobilization of plasmids in bacterial nanocellulose as gene activated matrix. Carbohydr. Polym. 209: 62–73, https://doi.org/10.1016/j.carbpol.2019.01.009.Search in Google Scholar PubMed

Quijano, L., Rodrigues, R., Fischer, D., Tovar-Castro, J.D., Payne, A., Navone, L., Hu, Y., Yan, H., Pinmanee, P., Poon, E., et al.. (2024). Bacterial cellulose cookbook: a systematic review on sustainable and cost-effective substrates. J. Bioresour. Bioprod. 9: 379–409, https://doi.org/10.1016/j.jobab.2024.05.003.Search in Google Scholar

R, R., Philip, E., Thomas, D., Madhavan, A., Sindhu, R., Binod, P., Varjani, S., Awasthi, M.K., and Pandey, A. (2021). Bacterial nanocellulose: engineering, production, and applications. Bioengineered 12: 11463–11483, https://doi.org/10.1080/21655979.2021.2009753.Search in Google Scholar PubMed PubMed Central

Sanyang, M.L., Saba, N., Jawaid, M., Mohammad, F., and Salit, M.S. (2017). Bacterial nanocellulose applications for tissue engineering. In: Nanocellulose and nanohydrogel matrices: biotechnological and biomedical applications. Wiley-VCH, Weinheim, Germany, pp. 47–66.10.1002/9783527803835.ch3Search in Google Scholar

Schlicht, S. and Drummer, D. (2023). Thermal intra-layer interaction of discretized fractal exposure strategies in non-isothermal powder bed fusion of polypropylene. J. Manuf. Mater. Process. 7(2): 63, https://doi.org/10.3390/jmmp7020063.Search in Google Scholar

Schlicht, S. and Drummer, D. (2024a). Geometry-induced process and part characteristics in support-free powder bed fusion of polypropylene at room temperature. Prog. Addit. Manuf. 9: 575–584, https://doi.org/10.1007/s40964-024-00656-3.Search in Google Scholar

Schlicht, S. and Drummer, D. (2024b). Laser-based additive manufacturing of polypropylene-agarose composites: processing properties and compressive mechanical properties. AIP Conf. Proc., 3158, 150003. https://doi.org/10.1063/5.0204523.Search in Google Scholar

Schlicht, S. and Drummer, D. (2024c). Layer-dependent temperature evolution and cooling kinetics in non-isothermal powder bed fusion of polypropylene. Proc. CIRP 124: 261–264, https://doi.org/10.1016/j.procir.2024.08.113.Search in Google Scholar

Schlicht, S., Cholewa, S., and Drummer, D. (2023). Process-structure-property interdependencies in non-isothermal powder bed fusion of polyamide 12. J. Manuf. Mater. Process. 7, https://doi.org/10.3390/jmmp7010033.Search in Google Scholar

Schlicht, S., Gabriel, C., and Drummer, D. (2024). Low temperature powder bed fusion of polyamide 6: transient process characteristics and process-dependent part properties. Prog. Addit. Manuf. 1–15, https://doi.org/10.1007/s40964-024-00812-9.Search in Google Scholar

Schlicht, S., Greiner, S., and Drummer, D. (2022). Low temperature powder bed fusion of polymers by means of fractal quasi-simultaneous exposure strategies. Polymers 14, https://doi.org/10.3390/polym14071428.Search in Google Scholar PubMed PubMed Central

Shahriari-Khalaji, M., Li, G., Liu, L., Sattar, M., Chen, L., Zhong, C., and Hong, F.F. (2022). A poly-l-lysine-bonded TEMPO-oxidized bacterial nanocellulose-based antibacterial dressing for infected wound treatment. Carbohydr. Polym. 287: 119266, https://doi.org/10.1016/j.carbpol.2022.119266.Search in Google Scholar PubMed

Vielreicher, M., Kralisch, D., Völkl, S., Sternal, F., Arkudas, A., and Friedrich, O. (2018). Bacterial nanocellulose stimulates mesenchymal stem cell expansion and formation of stable collagen-I networks as a novel biomaterial in tissue engineering. Sci. Rep. 8: 1–14, https://doi.org/10.1038/s41598-018-27760-z.Search in Google Scholar PubMed PubMed Central

White, D.G. and Brown, R.M.Jr. (1989). Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schürch, C. (Ed.). Cellulose and wood – chemistry and technology. John Wiley and Sons, Hoboken, New Jersey, pp. 573–590.Search in Google Scholar

Yuan, H., Chen, L., and Hong, F.F. (2019). A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl. Mater. Interfaces 12: 3382–3392, https://doi.org/10.1021/acsami.9b17732.Search in Google Scholar PubMed

Zarepour, A., Gok, B., Kılıç, Y.B., Khosravi, A., Iravani, S., and Zarrabi, A. (2024). Bacterial nanocelluloses as sustainable biomaterials for advanced wound healing and dressings. J. Mater. Chem. B 12: 12489–12507, https://doi.org/10.1039/d4tb01024h.Search in Google Scholar PubMed

Zhang, P., Chen, L., Zhang, Q., and Hong, F.F. (2016). Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings. Front. Microbiol. 7: 260, https://doi.org/10.3389/fmicb.2016.00260.Search in Google Scholar PubMed PubMed Central

Received: 2024-12-03
Accepted: 2025-03-04
Published Online: 2025-03-19
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2024-0158/pdf
Scroll to top button