Home Application of Microfluidics in Process Intensification
Article
Licensed
Unlicensed Requires Authentication

Application of Microfluidics in Process Intensification

  • Harrson S. Santana EMAIL logo , Mariana G. M. Lopes , João L. Silva and Osvaldir P. Taranto
Published/Copyright: October 19, 2018

Abstract

Is it possible to miniaturize a chemical plant? Some strategies, such as the process intensification, sustain that the advancements in equipment and production techniques could substantially decrease the equipment size/production capacity ratio, energy consumption and waste generation, resulting in more economic and sustainable operations and consequently reducing the chemical plant size. However, large reductions of equipment volume represent a major challenge for the conventional technologies. In this context, Microfluidics represents a promising technology in the field of system miniaturization. Accordingly, the present research evaluated the concept of process intensification and its relationship with Microfluidics. Initially, the definition and the classification of process intensification were described, following by the explanation of the Microfluidics, highlighting scale-up strategies and examples using miniaturized systems. Afterward, a methodology for miniaturized devices development for process intensification using numerical simulations was shown. Finally, the conclusions are exposed.

Funding statement: This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, 10.13039/501100003593, Grant Number: 404760/2016-3, Fundação de Amparo à Pesquisa do Estado de São Paulo, 10.13039/501100001807, Grant Number: 2016/20842-4

Acknowledgements

The authors would like to thank the National Postdoctoral Program (PNPD/Capes), the Unicamp Scholarship Program, the Microfabrication Laboratory (Proposal LMF-19844) and the financial support provided by CNPq (National Council for Scientific and Technological Development, Process 404760/2016-3), FAPESP (São Paulo Research Foundation, Process 2013/25850-7 and Process 2016/20842-4) and FAPEMIG (Minas Gerais Research Foundation, Process APQ-02144-17).

References

Al-Rawashdeh, M., J. Zalucky, C. Müller, T. A. Nijhuis, and J. C. Schouten. 2013. “Phenylacetylene Hydrogenation over [Rh(Nbd)(Pph3)2]Bf4 Catalyst in a Numbered-Up Microchannels Reactor.” Industrial & Engineering Chemistry Research 52: 11516–26.10.1021/ie4009277Search in Google Scholar

Ansari, M. A., and K-Y. Kim. 2009. “A Numerical Study of Mixing in A Microchannel with Circular Mixing Chambers.” AIChE Journal 55(9): 2217–25.10.1002/aic.11833Search in Google Scholar

AntiqueTech.2013. “The ENIAC vs. The Cell Phone.” Available in: Accessed November 14, 2017. <http://www.antiquetech.com/?page_id=1438/>.Search in Google Scholar

Billo, R. E., C. R Oliver, R. Charoenwat, B. H. Dennis, P. A. Wilson, J. W. Priest, and H. Beardsley. 2015. “A Cellular Manufacturing Process for A Full-Scale Biodiesel Microreactor.” Journal of Manufacturing Systems 37: 409–16.10.1016/j.jmsy.2014.07.004Search in Google Scholar

Cardoso, S., D. C. Leitao, T. M. Dias, J. Valadeiro, M. D. Silva, A. Chicharo, V. Silveiro, J. Gaspar, and P. P Freitas. 2017. “Challenges and Trends in Magnetic Sensor Integration with Microfluidics for Biomedical Applications.” Journal of Physics D: Applied Physics. 50. DOI: doi.org/10.1088/1361-6463/aa66ec.10.1088/1361-6463/aa66ecSearch in Google Scholar

Elvira, K. S., X. C. Solvas, R. C. R. Wootton, and A. J. Mello. 2013. “The Past, Present and Potential for Microfluidic Reactor Technology in Chemical Synthesis.” Nature Chemistry 5: 905–15.10.1038/nchem.1753Search in Google Scholar PubMed

Fogler, H. S. 2006. Elements of Chemical Reaction Engineering. Upper Saddle River, NJ: Prentice Hall PTR.Search in Google Scholar

Guan, G., M. Teshima, C. Sato, S.M. Son, M.F. Irfan, K. Kusakabek, N. Ikeda, and T.-J. Lin. 2010. “Two-Phase Flow Behavior in Microtube Reactors during Biodiesel Production from Waste Cooking Oil.” AIChE Journal 56(5): 1383–90.10.1002/aic.12042Search in Google Scholar

Han, T., L. Zhang, H. Xu, and J. Xuan. 2017. “Factory-On-Chip: Modularised Microfluidic Reactors for Continuous Mass Production of Functional Materials.” Chemical Engineering Journal 326: 765–73.10.1016/j.cej.2017.06.028Search in Google Scholar

Institution of Chemical Engineers (IChemE). 2007. “A Roadmap for twenty-first Century Chemical Engineering.” Available in: Accessed November 14, 2017. <http://www.gospi.fr/IMG/pdf/roadmap2007-GP.pdf/>.Search in Google Scholar

Kiss, A. A. 2014. Process Intensification Technologies for Biodiesel Production – Reactive Separation Process, 1st ed. Cham Heidelberg New York Dordrecht London: Springer.10.1007/978-3-319-03554-3Search in Google Scholar

Kockmann, C., T. Kiefer, M. Engler, and P. Woias. 2006. “Convective Mixing and Chemical Reactions in Microchannels with High Flow Rates.” Sensors and Actuators B 117: 495–508.10.1016/j.snb.2006.01.004Search in Google Scholar

Lee, C-Y., and L-M. Fu. 2018. “Recent Advances and Applications of Micromixers.” Sensors and Actuators B: Chemical 259: 677–702.10.1016/j.snb.2017.12.034Search in Google Scholar

Lee, C-Y., W-T. Wang, C-C. Liu, and L-M. Fu. 2016. “Passive Mixers in Microfluidic Systems: A Review.” Chemical Engineering Journal 288: 146–60.10.1016/j.cej.2015.10.122Search in Google Scholar

Lo, R. C. 2013. “Application of Microfluidics in Chemical Engineering.” Chemical Engineering & Process Techniques 1: 1002.Search in Google Scholar

Lutze, P., R. Gani, and J. M. Woodley. 2010. “Process Intensification: A Perspective on Process Synthesis.” Chemical Engineering and Processing: Process Intensification 49: 547–58.10.1016/j.cep.2010.05.002Search in Google Scholar

Melo, J. 2010. “Usinas de Biodiesel em Pernambuco. 30 de abr.” Avaliable in: Accessed November 16, 2017. https://www.biodieselbr.com/noticias/colunistas/convidado/usinas-biodiesel-pernambuco-300410.htm.Search in Google Scholar

Nagaki, A., K. Hirose, O. Tonomura, S. Taniguchi, T. Taga, S. Hasebe, N. Ishizuka, and J. Yoshida. 2016. “Design of a Numbering-Up System of Monolithic Microreactors and Its Application to Synthesis of a Key Intermediate of Valsartan.” Organic Process Research & Development 20: 687–91.10.1021/acs.oprd.5b00414Search in Google Scholar

Nguyen, N-T. 2012. Micromixers. Fundamentals, Design and Fabrication, 2nd ed. Waltham, MA, USA: William Andrew Applied Science Publishers/Elsevier. 353.Search in Google Scholar

Nguyen, N-T., and S. T. Wereley. 2006. Fundamentals and Applications of Microfluidics. Boston/London: Publishing House Artech House.Search in Google Scholar

Pohar, A., and I. Plazl. 2009. “Process Intensification through Microreactor Application.” Chemical and Biochemical Engineering Quarterly 23: 537–44.Search in Google Scholar

Qin, Y., W. He, M. Su, Z. Fang, J. Gu, P. Ouyang, K. Guo, et al. 2016. “Continuous Synthesis of Ginkgolide B Derivatives in a Micro-Flow System.” Tetrahedron Letters 57: 1243–46.10.1016/j.tetlet.2016.02.018Search in Google Scholar

Ramshaw, C. 1995. “The Incentive for Process Intensification.” Proceedings, 1st Intl. Conf. Proc. Intensif. for Chem. Ind., London, 18, 1.Search in Google Scholar

Sakuth, M., D. Reusch, and R. Janowsky. 2008. Reactive Distillation. Ullmann’s Encyclopedia of Industrial Chemistry. doi: 10.1002 / 14356007.c22_c01.pub2.10.1002/14356007.c22_c01.pub2Search in Google Scholar

Santana, H. S., G. B. Sanchez, and O. P. Taranto. 2017a. “Evaporation of Excess Alcohol in Biodiesel in a Microchannel Heat Exchanger with Peltier Module.” Chemical Engineering Research & Design 124: 20–28.10.1016/j.cherd.2017.05.022Search in Google Scholar

Santana, H. S., J. L. Silva Jr., and O. P. Taranto. 2015. “Numerical Simulations of Biodiesel Synthesis in Microchannels with Circular Obstructions.” Chemical Engineering and Processing: Process Intensification 98: 137–46.10.1016/j.cep.2015.10.011Search in Google Scholar

Santana, H. S., D. S. Tortola, E. M. Reis, J. L. Silva, and O. P. Taranto. 2016. “Transesterification Reaction of Sunflower Oil and Etanol for Biodiesel Synthesis in Microchannel Reactor: Experimental and Simulation Studies.” Chemical Engineering Journal 302: 752–62.10.1016/j.cej.2016.05.122Search in Google Scholar

Santana, H. S., D. S. Tortola, J. L. Silva, and O. P. Taranto. 2017b. “Biodiesel Synthesis in Micromixer with Static Elements.” Energy Conversion and Management 141: 28–39.10.1016/j.enconman.2016.03.089Search in Google Scholar

Silva Jr., J. L, H. S. Santanta, G. B. Sanchez, and O. P. Taranto. 2017. “Numerical Simulation of Excess Ethanol Evaporation from Biodiesel in a Micro Heat-Exchanger.” Chemical Engineering Transactions 57: 1123–28.Search in Google Scholar

Skardal, A., S.V. Murphy, M. Devarasetty, I. Mead, H-W. Kang, Y-J. Seol, Y.S. Zhang, et al. 2017. “Multi-Tissue Interactions in an Integrated Three-Tissue Organ-On-A-Chip Platform.” Scientific Reports 7(1): 8837.10.1038/s41598-017-08879-xSearch in Google Scholar PubMed PubMed Central

Snytnikov, P. V., D. I. Potemkin, E. V. Rebrov, V. A. Sobyanin, V. Hessel, and J. C. Schouten. 2010. “Design, Scale-Out, and Operation of a Microchannel Reactor with a Cu/CeO2-x Catalytic for Preferential CO Oxidation.” Chemical Engineering Journal 160: 923–29.10.1016/j.cej.2009.12.019Search in Google Scholar

Solehati, N., J. Bae, and A. P. Sasmito. 2014. “Numerical Investigation of Mixing Performance in Microchannel T-Junction with Wavy Structure.” Computer & Fluids 96: 10–14.10.1016/j.compfluid.2014.03.003Search in Google Scholar

Solorzano, I. O., A. U. L. Larrea, V. M. M. Sebastian, and M. Arruebo. 2016. “Continuous Synthesis of Drug-Loaded Nanoparticles Using Microchannel Emulsifcation and Numerical Modeling: Effect of Passive Mixing.” International Journal of Nanomedicine 11: 3397–416.10.2147/IJN.S108812Search in Google Scholar PubMed PubMed Central

Stankiewicz, A. I., and J. A. Moulijn. 2000. “Process Intensification: Transforming Chemical Engineering.” Chemical Engineering Progress 96(1): 22–33.Search in Google Scholar

Su, Y., K. Kuijpers, V. Hessel, and T. Noël. 2016. “A Convenient Numbering-Up Strategy for the Scale-Up of Gas–Liquid Photoredox Catalysis in Flow.” Reaction Chemistry & Engineering 1: 73–81.10.1039/C5RE00021ASearch in Google Scholar

Suh, Y. K., and S. Kang. 2010. “A Review on Mixing in Microfluidics.” Micromachines 1: 82–111.10.3390/mi1030082Search in Google Scholar

Sultan, M.A., C.P. Fonte, M.M. Dias, J.C.B. Lopes, and R.J. Santos. 2012. “Experimental Study of Flow Regime and Mixing in T-Jets Mixers.” Chemical Engineering Science 73: 388–99.10.1016/j.ces.2012.02.010Search in Google Scholar

Sun, J., J. Ju, L. Zhang, and N. Xu. 2008. “Synthesis of Biodiesel in Capillary Microreactors.” Industry Engineering Chemistry Research 47: 1398–403.10.1021/ie070295qSearch in Google Scholar

Tabeling, P. 2005. Introduction to Microfluidics. Great Britain: Oxford University Press.Search in Google Scholar

Tapanes, N. C. O., D. A. G. Aranda, J. W. De M. Carneiro, and A. C. A. Antunes. 2008. “Transesterification of Jatropha Curcas Oil Glycerides: Theoretical and Experimental Studies of Biodiesel Reaction.” Fuel 87: 2286–95.10.1016/j.fuel.2007.12.006Search in Google Scholar

Togashi, S., T. Miyamoto, Y. Asano, and Y. Endo. 2009. “Yield Improvement of Chemical Reactions by Using a Microreactor and Development of a Pilot Plant Using the Numbering-Up of Microreactors.” Journal of Chemical Engineering of Japan 42: 512–19.10.1252/jcej.08we277Search in Google Scholar

Wang, J., F. Li, and R. Lakerveld. 2018. “Process Intensification for Pharmaceutical Crystallization.” Chemical Engineering & Processing: Process Intensification 127: 111–26.10.1016/j.cep.2018.03.018Search in Google Scholar

Wang, K., Y. Lu, and G. Luo. 2014. “Strategy for Scaling-Up of Microsieve Dispersion Reactor.” Chemical Engineering Technology 37: 2116–22.10.1002/ceat.201400296Search in Google Scholar

Whitesides, G. M. 2006. “The Origins and the Future of Microfluidics.” Nature 442: 368–73.10.1038/nature05058Search in Google Scholar PubMed

Xia, Y., and G. M. Whitesides. 1998. “Soft Lithography.” Annual Review of Materials Research 28: 153–84.Search in Google Scholar

Yap, S. K., W. K. Wong, N. X. Yang Ng, and S. A Khan. 2017. “Three-Phase Microfluidic Reactor Networks – Design, Modeling and Application to Scale-Out Nanoparticle-Catalyzed Hydrogenations with Online Catalyst Recovery and Recycle.” Chemical Engineering Science 169: 117–27.10.1016/j.ces.2016.12.005Search in Google Scholar

Zhang, J., K.Wang, A. R.Teixeira, K.F.Jensen, and G.Luo. 2017. “Design and Scaling up of Microchemical Systems: A Review.” Annual Review of Chemical and Biomolecular Engineering8: 13.1–13.21.10.1146/annurev-chembioeng-060816-101443Search in Google Scholar PubMed

Received: 2018-02-20
Revised: 2018-05-09
Accepted: 2018-09-09
Published Online: 2018-10-19

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2018-0038/pdf
Scroll to top button