Abstract
Bioactive lipids regulate most physiological processes, from digestion to blood flow and from hemostasis to labor. Lipid mediators are also involved in multiple pathologies including cancer, autoimmunity or asthma. The pathological roles of lipid mediators are based on their intricate involvement in the immune system, which comprises source and target cells of these mediators. Based on their biosynthetic origin, bioactive lipids can be grouped into different classes [e.g. sphingolipids, formed from sphingosine or eicosanoids, formed from arachidonic acid (AA)]. Owing to the complexity of different mediator classes and the prominent immunological roles of eicosanoids, this review will focus solely on the immune-regulation of eicosanoids. Eicosanoids do not only control key immune responses (e.g. chemotaxis, antigen presentation, phagocytosis), but they are also subject to reciprocal control by the immune system. Particularly, key immunoregulatory cytokines such as IL-4 and IFN-γ shape the cellular eicosanoid profile, thus providing efficient feedback regulation between cytokine and eicosanoid networks. For the purpose of this review, I will first provide a short overview of the most important immunological functions of eicosanoids with a focus on prostaglandins (PGs) and leukotrienes (LTs). Second, I will summarize the current knowledge on immunological factors that regulate eicosanoid production during infection and inflammation.
Funding: Deutsche Forschungsgemeinschaft (Grant/Award Number: ‘DFG ES 471/2-1’) and Else Kröner-Fresenius-Stiftung (Grant/Award Number: ‘2015_A195’).
References
Agostini, L., Martinon, F., Burns, K., McDermott, M.F., Hawkins, P.N., and Tschopp, J. (2004). NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325.10.1016/S1074-7613(04)00046-9Search in Google Scholar
Ahmad, S., Ytterberg, A.J., Thulasingam, M., Tholander, F., Bergman, T., Zubarev, R., Wetterholm, A., Rinaldo-Matthis, A., and Haeggström, J.Z. (2016). Phosphorylation of leukotriene C4 Synthase at serine 36 impairs catalytic activity. J. Biol. Chem. 291, 18410–18418.10.1074/jbc.M116.735647Search in Google Scholar PubMed PubMed Central
Alfajaro, M.M., Choi, J.-S., Kim, D.-S., Seo, J.-Y., Kim, J.-Y., Park, J.-G., Soliman, M., Baek, Y.-B., Cho, E.-H., Kwon, J., et al. (2017). Activation of COX-2/PGE2 promotes sapovirus replication via the inhibition of nitric oxide production. J. Virol. 91, 1–14.10.1128/JVI.01656-16Search in Google Scholar PubMed PubMed Central
Aliberti, J., Hieny, S., Reis e Sousa, C., Serhan, C.N., and Sher, A. (2002a). Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat. Immunol. 3, 76–82.10.1038/ni745Search in Google Scholar PubMed
Aliberti, J., Serhan, C., and Sher, A. (2002b). Parasite-induced lipoxin A4 is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection. J. Exp. Med. 196, 1253–1262.10.1084/jem.20021183Search in Google Scholar PubMed PubMed Central
Allen, J.E. and Wynn, T.A. (2011). Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003.10.1371/journal.ppat.1002003Search in Google Scholar PubMed PubMed Central
Arias-Negrete, S., Keller, K., and Chadee, K. (1995). Proinflammatory cytokines regulate cyclooxygenase-2 mRNA expression in human macrophages. Biochem. Biophys. Res. Commun. 208, 582–589.10.1006/bbrc.1995.1378Search in Google Scholar PubMed
Ashraf, M., Murakami, M., and Kudo, I. (1996). Cross-linking of the high-affinity IgE receptor induces the expression of cyclo-oxygenase 2 and attendant prostaglandin generation requiring interleukin 10 and interleukin 1 beta in mouse cultured mast cells. Biochem. J. 320, 965–973.10.1042/bj3200965Search in Google Scholar PubMed PubMed Central
Bailie, M.B., Standiford, T.J., Laichalk, L.L., Coffey, M.J., Strieter, R., and Peters-Golden, M. (1996). Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J. Immunol. 157, 5221–5224.10.4049/jimmunol.157.12.5221Search in Google Scholar
Baracos, V., Rodemann, H.P., Dinarello, C.A., and Goldberg, A.L. (1983). Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N. Engl. J. Med. 308, 553–558.10.1056/NEJM198303103081002Search in Google Scholar PubMed
Barrett, N.A., Maekawa, A., Rahman, O.M., Austen, K.F., and Kanaoka, Y. (2009). Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J. Immunol. 182, 1119–1128.10.4049/jimmunol.182.2.1119Search in Google Scholar PubMed PubMed Central
Barrett, N.A., Rahman, O.M., Fernandez, J.M., Parsons, M.W., Xing, W., Austen, K.F., and Kanaoka, Y. (2011). Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J. Exp. Med. 208, 593–604.10.1084/jem.20100793Search in Google Scholar
Barrios-Rodiles, M. and Chadee, K. (1998). Novel regulation of cyclooxygenase-2 expression and prostaglandin E2 production by IFN-γ in human macrophages. J. Immunol. 161, 2441–2448.10.4049/jimmunol.161.5.2441Search in Google Scholar
Berg, D.J., Zhang, J., Lauricella, D.M., and Moore, S.A. (2001). Il-10 is a central regulator of cyclooxygenase-2 expression and prostaglandin production. J. Immunol. 166, 2674–2680.10.4049/jimmunol.166.4.2674Search in Google Scholar
Boraschi, D., Censini, S., and Tagliabue, A. (1984). Interferon-γ reduces macrophage-suppressive activity by inhibiting prostaglandin E2 release and inducing interleukin 1 production. J. Immunol. 133, 764–768.10.4049/jimmunol.133.2.764Search in Google Scholar
Cahill, K.N., Raby, B.A., Zhou, X., Guo, F., Thibault, D., Baccarelli, A., Byun, H.-M., Bhattacharyya, N., Steinke, J.W., Boyce, J.A., et al. (2015). Impaired EP2 expression causes resistance to prostaglandin E2 in nasal polyp fibroblasts from subjects with AERD. Am. J. Respir. Cell Mol. Biol. 54, 34–40.10.1165/rcmb.2014-0486OCSearch in Google Scholar
Chen, F., Liu, Z., Wu, W., Rozo, C., Bowdridge, S., Millman, A., Van Rooijen, N., Urban, J.F., Jr, Wynn, T.A., and Gause, W.C. (2012). An essential role for T(H)2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 18, 260–266.10.1038/nm.2628Search in Google Scholar
Chen, F., Wu, W., Millman, A., Craft, J.F., Chen, E., Patel, N., Boucher, J.L., Urban, J.F., Kim, C.C., and Gause, W.C. (2014). Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946.10.1038/ni.2984Search in Google Scholar
Chen, H., Qin, J., Wei, P., Zhang, J., Li, Q., Fu, L., Li, S., Ma, C., and Cong, B. (2009). Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+ T regulatory cells and Th17 cells. Prostaglandins Leukot. Essent. Fatty Acids 80, 195–200.10.1016/j.plefa.2009.01.006Search in Google Scholar
Chen, J.H., Perry, C.J., Tsui, Y.-C., Staron, M.M., Parish, I.A., Dominguez, C.X., Rosenberg, D.W., and Kaech, S.M. (2015). Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21, 327–334.10.1038/nm.3831Search in Google Scholar
Chen, M., Divangahi, M., Gan, H., Shin, D.S.J., Hong, S., Lee, D.M., Serhan, C.N., Behar, S.M., and Remold, H.G. (2008). Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205, 2791–2801.10.1084/jem.20080767Search in Google Scholar
Chen, N., Restivo, A., and Reiss, C.S. (2001). Leukotrienes play protective roles early during experimental VSV encephalitis. J. Neuroimmunol. 120, 94–102.10.1016/S0165-5728(01)00415-5Search in Google Scholar
Cheong, H.S., Park, S.-M., Kim, M.-O., Park, J.-S., Lee, J.Y., Byun, J.Y., Park, B.L., Shin, H.D., and Park, C.-S. (2011). Genome-wide methylation profile of nasal polyps: relation to aspirin hypersensitivity in asthmatics. Allergy 66, 637–644.10.1111/j.1398-9995.2010.02514.xSearch in Google Scholar PubMed
Cho, W., Kim, Y., Jeoung, D.-I., Kim, Y.-M., and Choe, J. (2011). IL-4 and IL-13 suppress prostaglandins production in human follicular dendritic cells by repressing COX-2 and mPGES-1 expression through JAK1 and STAT6. Mol. Immunol. 48, 966–972.10.1016/j.molimm.2011.01.007Search in Google Scholar
Clarke, D.L., Davis, N.H.E., Campion, C.L., Foster, M.L., Heasman, S.C., Lewis, A.R., Anderson, I.K., Corkill, D.J., Sleeman, M.A., May, R.D., et al. (2014). Dectin-2 sensing of house dust mite is critical for the initiation of airway inflammation. Mucosal Immunol. 7, 558–567.10.1038/mi.2013.74Search in Google Scholar
Conti, H.R., Shen, F., Nayyar, N., Stocum, E., Sun, J.N., Lindemann, M.J., Ho, A.W., Hai, J.H., Yu, J.J., Jung, J.W., et al. (2009). Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311.10.1084/jem.20081463Search in Google Scholar
Cowburn, A.S., Holgate, S.T., and Sampson, A.P. (1999). IL-5 increases expression of 5-lipoxygenase-activating protein and translocates 5-lipoxygenase to the nucleus in human blood eosinophils. J. Immunol. 163, 456–465.10.4049/jimmunol.163.1.456Search in Google Scholar
Curtis, J., Kopanitsa, L., Stebbings, E., Speirs, A., Ignatyeva, O., Balabanova, Y., Nikolayevskyy, V., Hoffner, S., Horstmann, R., Drobniewski, F., et al. (2011). Association analysis of the LTA4H gene polymorphisms and pulmonary tuberculosis in 9115 subjects. Tuberculosis 91, 22–25.10.1016/j.tube.2010.11.001Search in Google Scholar
Delemarre, F.G., Stevenhagen, A., and Van Furth, R. (1995a). Granulocyte-macrophage colony-stimulating factor (GM-CSF) reduces toxoplasmastatic activity of human monocytes via induction of prostaglandin E2 (PGE2). Clin. Exp. Immunol. 102, 425–429.10.1111/j.1365-2249.1995.tb03800.xSearch in Google Scholar
Delemarre, F.G., Stevenhagen, A., Kroon, F.P., van Eer, M.Y., Meenhorst, P.L., and van Furth, R. (1995b). Reduced toxoplasmastatic activity of monocytes and monocyte-derived macrophages from AIDS patients is mediated via prostaglandin E2. AIDS 9, 441–445.10.1097/00002030-199509050-00005Search in Google Scholar
Dietz, K., de Los Reyes Jiménez, M., Gollwitzer, E.S., Chaker, A.M., Zissler, U.M., Rådmark, O.P., Baarsma, H.A., Königshoff, M., Schmidt-Weber, C.B., Marsland, B.J., et al. (2016). Age dictates a steroid-resistant cascade of Wnt5a, transglutaminase 2, and leukotrienes in inflamed airways. J. Allergy Clin. Immunol. 139, 1343–1354.10.1016/j.jaci.2016.07.014Search in Google Scholar
Dinarello, C.A. and Wolff, S.M. (1982). Molecular basis of fever in humans. Am. J. Med. 72, 799–819.10.1016/0002-9343(82)90548-4Search in Google Scholar
Divangahi, M., Desjardins, D., Nunes-Alves, C., Remold, H.G., and Behar, S.M. (2010). Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat. Immunol. 11, 751–758.10.1038/ni.1904Search in Google Scholar PubMed PubMed Central
Divanovic, S., Dalli, J., Jorge-Nebert, L.F., Flick, L.M., Gálvez-Peralta, M., Boespflug, N.D., Stankiewicz, T.E., Fitzgerald, J.M., Somarathna, M., Karp, C.L., et al. (2013). Contributions of the three CYP1 monooxygenases to pro-inflammatory and inflammation-resolution lipid mediator pathways. J. Immunol. 191, 3347–3357.10.4049/jimmunol.1300699Search in Google Scholar PubMed PubMed Central
Doerfler, M.E., Danner, R.L., Shelhamer, J.H., and Parrillo, J.E. (1989). Bacterial lipopolysaccharides prime human neutrophils for enhanced production of leukotriene B4. J. Clin. Invest. 83, 970–977.10.1172/JCI113983Search in Google Scholar PubMed PubMed Central
Doherty, T.A., Khorram, N., Lund, S., Mehta, A.K., Croft, M., and Broide, D.H. (2013). Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132, 205–213.10.1016/j.jaci.2013.03.048Search in Google Scholar PubMed PubMed Central
Draijer, C., Boorsma, C.E., Reker-Smit, C., Post, E., Poelstra, K., and Melgert, B.N. (2016). PGE2-treated macrophages inhibit development of allergic lung inflammation in mice. J. Leukoc. Biol. 100, 95–102.10.1189/jlb.3MAB1115-505RSearch in Google Scholar PubMed PubMed Central
Esaki, Y., Li, Y., Sakata, D., Yao, C., Segi-Nishida, E., Matsuoka, T., Fukuda, K., and Narumiya, S. (2010). Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 107, 12233–12238.10.1073/pnas.0915112107Search in Google Scholar PubMed PubMed Central
Esser, J., Gehrmann, U., D’Alexandri, F.L., Hidalgo-Estévez, A.M., Wheelock, C.E., Scheynius, A., Gabrielsson, S., and Rådmark, O. (2010). Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J. Allergy Clin. Immunol. 126, 1032–1040, 1040.e1–4.10.1016/j.jaci.2010.06.039Search in Google Scholar PubMed
Esser, J., Gehrmann, U., Salvado, M.D., Wetterholm, A., Haeggström, J.Z., Samuelsson, B., Gabrielsson, S., Scheynius, A., and Rådmark, O. (2011). Zymosan suppresses leukotriene C₄ synthase activity in differentiating monocytes: antagonism by aspirin and protein kinase inhibitors. FASEB J. 25, 1417–1427.10.1096/fj.10-175828Search in Google Scholar PubMed
Esser-von Bieren, J., Mosconi, I., Guiet, R., Piersgilli, A., Volpe, B., Chen, F., Gause, W.C., Seitz, A., Verbeek, J.S., and Harris, N.L. (2013). Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages. PLoS Pathog. 9, e1003771.10.1371/journal.ppat.1003771Search in Google Scholar PubMed PubMed Central
Esser-von Bieren, J., Volpe, B., Kulagin, M., Sutherland, D.B., Guiet, R., Seitz, A., Marsland, B.J., Verbeek, J.S., and Harris, N.L. (2015a). Antibody-mediated trapping of helminth larvae requires CD11b and Fcγ receptor I. J. Immunol. 194, 1154–1163.10.4049/jimmunol.1401645Search in Google Scholar PubMed PubMed Central
Esser-von Bieren, J., Volpe, B., Sutherland, D.B., Bürgi, J., Verbeek, J.S., Marsland, B.J., Urban, J.F., and Harris, N.L. (2015b). Immune antibodies and helminth products drive CXCR2-dependent macrophage-myofibroblast crosstalk to promote intestinal repair. PLoS Pathog. 11, e1004778.10.1371/journal.ppat.1004778Search in Google Scholar PubMed PubMed Central
Fernández, N., Alonso, S., Valera, I., Vigo, A.G., Renedo, M., Barbolla, L., and Crespo, M.S. (2005). Mannose-containing molecular patterns are strong inducers of cyclooxygenase-2 expression and prostaglandin E2 production in human macrophages. J. Immunol. 174, 8154–8162.10.4049/jimmunol.174.12.8154Search in Google Scholar PubMed
Ferreira, S.H. and Vane, J.R. (1967). Prostaglandins: their disappearance from and release into the circulation. Nature 216, 868–873.10.1038/216868a0Search in Google Scholar
Fink, S.L., Bergsbaken, T., and Cookson, B.T. (2008). Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc. Natl. Acad. Sci. USA 105, 4312–4317.10.1073/pnas.0707370105Search in Google Scholar
Freire-de-Lima, C.G., Xiao, Y.Q., Gardai, S.J., Bratton, D.L., Schiemann, W.P., and Henson, P.M. (2006). Apoptotic cells, through transforming growth factor-β, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J. Biol. Chem. 281, 38376–38384.10.1074/jbc.M605146200Search in Google Scholar
Gandhi, J., Gaur, N., Khera, L., Kaul, R., and Robertson, E.S. (2015). COX-2 induces lytic reactivation of EBV through PGE2 by modulating the EP receptor signaling pathway. Virology 484, 1–14.10.1016/j.virol.2015.05.006Search in Google Scholar
Godson, C., Bell, K.S., and Insel, P.A. (1993). Inhibition of expression of protein kinase C alpha by antisense cDNA inhibits phorbol ester-mediated arachidonate release. J. Biol. Chem. 268, 11946–11950.10.1016/S0021-9258(19)50291-5Search in Google Scholar
Gold, M.J., Antignano, F., Halim, T.Y.F., Hirota, J.A., Blanchet, M.-R., Zaph, C., Takei, F., and McNagny, K.M. (2014). Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J. Allergy Clin. Immunol. 133, 1142–1148.10.1016/j.jaci.2014.02.033Search in Google Scholar PubMed
Goldmann, O., Hertzén, E., Hecht, A., Schmidt, H., Lehne, S., Norrby-Teglund, A., and Medina, E. (2010). Inducible cyclooxygenase released prostaglandin E2 modulates the severity of infection caused by Streptococcus pyogenes. J. Immunol. 185, 2372–2381.10.4049/jimmunol.1000838Search in Google Scholar PubMed
Gosselin, J., Borgeat, P., and Flamand, L. (2005). Leukotriene B4 protects latently infected mice against murine cytomegalovirus reactivation following allogeneic transplantation. J. Immunol. 174, 1587–1593.10.4049/jimmunol.174.3.1587Search in Google Scholar PubMed
Griffiths, R.J., Smith, M.A., Roach, M.L., Stock, J.L., Stam, E.J., Milici, A.J., Scampoli, D.N., Eskra, J.D., Byrum, R.S., Koller, B.H., et al. (1997). Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. J. Exp. Med. 185, 1123–1129.10.1084/jem.185.6.1123Search in Google Scholar PubMed PubMed Central
Guillemot, L., Medina, M., Pernet, E., Leduc, D., Chignard, M., Touqui, L., and Wu, Y. (2014). Cytosolic phospholipase A2α enhances mouse mortality induced by Pseudomonas aeruginosa pulmonary infection via interleukin 6. Biochimie 107, 95–104.10.1016/j.biochi.2014.08.018Search in Google Scholar PubMed
Gupta, N., Nicholson, D.W., and Ford-Hutchinson, A.W. (1999). Demonstration of cell-specific phosphorylation of LTC4 synthase. FEBS Lett. 449, 66–70.10.1016/S0014-5793(99)00397-XSearch in Google Scholar
Hallstrand, T.S., Lai, Y., Hooper, K.A., Oslund, R.C., Altemeier, W.A., Matute-Bello, G., and Gelb, M.H. (2015). Endogenous secreted phospholipase A2 group X regulates cysteinyl leukotrienes synthesis by human eosinophils. J. Allergy Clin. Immunol. 137, 268–277.10.1016/j.jaci.2015.05.026Search in Google Scholar
Ham, E.A., Soderman, D.D., Zanetti, M.E., Dougherty, H.W., McCauley, E., and Kuehl, F.A. (1983). Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc. Natl. Acad. Sci. USA 80, 4349–4353.10.1073/pnas.80.14.4349Search in Google Scholar
Harizi, H., Juzan, M., Moreau, J.-F., and Gualde, N. (2003). Prostaglandins inhibit 5-lipoxygenase-activating protein expression and leukotriene B4 production from dendritic cells via an IL-10-dependent mechanism. J. Immunol. 170, 139–146.10.4049/jimmunol.170.1.139Search in Google Scholar
Honda, T. and Kabashima, K. (2015). Prostanoids in allergy. Allergol. Int. 64, 11–16.10.1016/j.alit.2014.08.002Search in Google Scholar
Huang, J.T., Welch, J.S., Ricote, M., Binder, C.J., Willson, T.M., Kelly, C., Witztum, J.L., Funk, C.D., Conrad, D., and Glass, C.K. (1999). Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400, 378–382.10.1038/22572Search in Google Scholar
Huang, Z.F., Massey, J.B., and Via, D.P. (2000). Differential regulation of cyclooxygenase-2 (COX-2) mRNA stability by interleukin-1 beta (IL-1β) and tumor necrosis factor-α (TNF-α) in human in vitro differentiated macrophages. Biochem. Pharmacol. 59, 187–194.10.1016/S0006-2952(99)00312-3Search in Google Scholar
Katryniok, C., Schnur, N., Gillis, A., von Knethen, A., Sorg, B.L., Looijenga, L., Rådmark, O., and Steinhilber, D. (2010). Role of DNA methylation and methyl-DNA binding proteins in the repression of 5-lipoxygenase promoter activity. Biochim. Biophys. Acta 1801, 49–57.10.1016/j.bbalip.2009.09.003Search in Google Scholar PubMed
Kaul, V., Bhattacharya, D., Singh, Y., Van Kaer, L., Peters-Golden, M., Bishai, W.R., and Das, G. (2012). An important role of prostanoid receptor EP2 in host resistance to Mycobacterium tuberculosis infection in mice. J. Infect. Dis. 206, 1816–1825.10.1093/infdis/jis609Search in Google Scholar PubMed PubMed Central
Knight, D.A., Asokananthan, N., Watkins, D.N., Misso, N.L., Thompson, P.J., and Stewart, G.A. (2000). Oncostatin M synergises with house dust mite proteases to induce the production of PGE(2) from cultured lung epithelial cells. Br. J. Pharmacol. 131, 465–472.10.1038/sj.bjp.0703612Search in Google Scholar PubMed PubMed Central
Kuroda, E., Noguchi, J., Doi, T., Uematsu, S., Akira, S., and Yamashita, U. (2007). IL-3 is an important differentiation factor for the development of prostaglandin E2-producing macrophages between C57BL/6 and BALB/c mice. Eur. J. Immunol. 37, 2185–2195.10.1002/eji.200737041Search in Google Scholar PubMed
Lefèvre, L., Authier, H., Stein, S., Majorel, C., Couderc, B., Dardenne, C., Eddine, M.A., Meunier, E., Bernad, J., Valentin, A., et al. (2015). LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARγ ligand synthesis. Nat. Commun. 6, 6801.10.1038/ncomms7801Search in Google Scholar PubMed PubMed Central
Lemos, H.P., Grespan, R., Vieira, S.M., Cunha, T.M., Verri, W.A., Fernandes, K.S.S., Souto, F.O., McInnes, I.B., Ferreira, S.H., Liew, F.Y., et al. (2009). Prostaglandin mediates IL-23/IL-17-induced neutrophil migration in inflammation by inhibiting IL-12 and IFNgamma production. Proc. Natl. Acad. Sci. USA 106, 5954–5959.10.1073/pnas.0812782106Search in Google Scholar PubMed PubMed Central
Liang, L., Zhang, Q., Luo, L.-L., Yue, J., Zhao, Y.-L., Han, M., Liu, L.-R., and Xiao, H.-P. (2016). Polymorphisms in the prostaglandin receptor EP2 gene confers susceptibility to tuberculosis. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 46, 23–27.10.1016/j.meegid.2016.10.016Search in Google Scholar PubMed
Lindley, A.R., Crapster-Pregont, M., Liu, Y., and Kuperman, D.A. (2010). 12/15-lipoxygenase is an interleukin-13 and interferon-γ counterregulated-mediator of allergic airway inflammation. Mediat. Inflamm. 2010, pii: 727305.Search in Google Scholar
Lindner, S.C., Köhl, U., Maier, T.J., Steinhilber, D., and Sorg, B.L. (2009). TLR2 ligands augment cPLA2alpha activity and lead to enhanced leukotriene release in human monocytes. J. Leukoc. Biol. 86, 389–399.10.1189/jlb.1008591Search in Google Scholar PubMed
Liu, M. and Yokomizo, T. (2015). The role of leukotrienes in allergic diseases. Allergol. Int. 64, 17–26.10.1016/j.alit.2014.09.001Search in Google Scholar PubMed
Longo, N., Zabay, J.M., Sempere, J.M., Navarro, J., and Fernández-Cruz, E. (1993). Altered production of PGE2, IL-1β and TNF-α by peripheral blood monocytes from HIV-positive individuals at early stages of HIV infection. J. Acquir. Immune Defic. Syndr. 6, 1017–1023.Search in Google Scholar
Lukic, A., Ji, J., Idborg, H., Samuelsson, B., Palmberg, L., Gabrielsson, S., and Radmark, O. (2016). Pulmonary epithelial cells, and their exosomes, metabolize myeloid cell derived leukotriene C4 to leukotriene D4. J. Lipid Res. 57, 1659–1669.10.1194/jlr.M066910Search in Google Scholar PubMed PubMed Central
Luo, M., Jones, S.M., Phare, S.M., Coffey, M.J., Peters-Golden, M., and Brock, T.G. (2004). Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J. Biol. Chem. 279, 41512–41520.10.1074/jbc.M312568200Search in Google Scholar PubMed
Machado, E.R., Ueta, M.T., Lourenço, E.V., Anibal, F.F., Sorgi, C.A., Soares, E.G., Roque-Barreira, M.C., Medeiros, A.I., and Faccioli, L.H. (2005). Leukotrienes play a role in the control of parasite burden in murine strongyloidiasis. J. Immunol. 175, 3892–3899.10.4049/jimmunol.175.6.3892Search in Google Scholar PubMed
Machado, E.R., Carlos, D., Lourenço, E.V., Souza, G.E.P., Sorgi, C.A., Silva, E.V., Ueta, M.T., Ramos, S.G., Aronoff, D.M., and Faccioli, L.H. (2010). Cyclooxygenase-derived mediators regulate the immunological control of Strongyloides venezuelensis infection. FEMS Immunol. Med. Microbiol. 59, 18–32.10.1111/j.1574-695X.2010.00656.xSearch in Google Scholar PubMed
Majumdar, R., Tavakoli Tameh, A., and Parent, C.A. (2016). Exosomes mediate LTB4 release during neutrophil chemotaxis. PLoS Biol. 14, e1002336.10.1371/journal.pbio.1002336Search in Google Scholar PubMed PubMed Central
Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218.10.1038/nature02664Search in Google Scholar PubMed
Mathis, S.P., Jala, V.R., Lee, D.M., and Haribabu, B. (2010). Nonredundant roles for leukotriene B4 receptors BLT1 and BLT2 in inflammatory arthritis. J. Immunol. 185, 3049–3056.10.4049/jimmunol.1001031Search in Google Scholar PubMed
McCurdy, J.D., Olynych, T.J., Maher, L.H., and Marshall, J.S. (2003). Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J. Immunol. 170, 1625–1629.10.4049/jimmunol.170.4.1625Search in Google Scholar PubMed
Meslier, N., Aldrich, A.J., and Bigby, T.D. (1992). Effect of interferon-gamma on the 5-lipoxygenase pathway of rat lung macrophages. Am. J. Respir. Cell Mol. Biol. 6, 93–99.10.1165/ajrcmb/6.1.93Search in Google Scholar PubMed
Minutti, C.M., Jackson-Jones, L.H., García-Fojeda, B., Knipper, J.A., Sutherland, T.E., Logan, N., Rinqvist, E., Guillamat-Prats, R., Ferenbach, D.A., Artigas, A., et al. (2017). Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science 356, 1076–1080.10.1126/science.aaj2067Search in Google Scholar PubMed PubMed Central
Mrsny, R.J., Gewirtz, A.T., Siccardi, D., Savidge, T., Hurley, B.P., Madara, J.L., and McCormick, B.A. (2004). Identification of hepoxilin A3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia. Proc. Natl. Acad. Sci. USA 101, 7421–7426.10.1073/pnas.0400832101Search in Google Scholar PubMed PubMed Central
Murakami, M., Austen, K.F., Bingham, C.O., Friend, D.S., Penrose, J.F., and Arm, J.P. (1995a). Interleukin-3 regulates development of the 5-lipoxygenase/leukotriene C4 synthase pathway in mouse mast cells. J. Biol. Chem. 270, 22653–22656.10.1074/jbc.270.39.22653Search in Google Scholar PubMed
Murakami, M., Penrose, J.F., Urade, Y., Austen, K.F., and Arm, J.P. (1995b). Interleukin 4 suppresses c-kit ligand-induced expression of cytosolic phospholipase A2 and prostaglandin endoperoxide synthase 2 and their roles in separate pathways of eicosanoid synthesis in mouse bone marrow-derived mast cells. Proc. Natl. Acad. Sci. USA 92, 6107–6111.10.1073/pnas.92.13.6107Search in Google Scholar PubMed PubMed Central
Napolitani, G., Acosta-Rodriguez, E.V., Lanzavecchia, A., and Sallusto, F. (2009). Prostaglandin E2 enhances Th17 responses via modulation of IL-17 and IFN-γ production by memory CD4+ T cells. Eur. J. Immunol. 39, 1301–1312.10.1002/eji.200838969Search in Google Scholar PubMed
Nebert, D.W. and Karp, C.L. (2008). Endogenous functions of the aryl hydrocarbon receptor (AHR): intersection of cytochrome P450 1 (CYP1)-metabolized eicosanoids and AHR biology. J. Biol. Chem. 283, 36061–36065.10.1074/jbc.R800053200Search in Google Scholar PubMed PubMed Central
Niiro, H., Otsuka, T., Izuhara, K., Yamaoka, K., Ohshima, K., Tanabe, T., Hara, S., Nemoto, Y., Tanaka, Y., Nakashima, H., et al. (1997). Regulation by interleukin-10 and interleukin-4 of cyclooxygenase-2 expression in human neutrophils. Blood 89, 1621–1628.10.1182/blood.V89.5.1621Search in Google Scholar
Oliveira, S.H.P., Canetti, C., Ribeiro, R.A., and Cunha, F.Q. (2008). Neutrophil migration induced by IL-1β depends upon LTB4 released by macrophages and upon TNF-α and IL-1β released by mast cells. Inflammation 31, 36–46.10.1007/s10753-007-9047-xSearch in Google Scholar PubMed
Olynych, T.J., Jakeman, D.L., and Marshall, J.S. (2006). Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. J. Allergy Clin. Immunol. 118, 837–843.10.1016/j.jaci.2006.06.008Search in Google Scholar PubMed
Pacheco, P., Bozza, F.A., Gomes, R.N., Bozza, M., Weller, P.F., Castro-Faria-Neto, H.C., and Bozza, P.T. (2002). Lipopolysaccharide-induced leukocyte lipid body formation in vivo: innate immunity elicited intracellular Loci involved in eicosanoid metabolism. J. Immunol. 169, 6498–6506.10.4049/jimmunol.169.11.6498Search in Google Scholar PubMed
Peres, C.M., de Paula, L., Medeiros, A.I., Sorgi, C.A., Soares, E.G., Carlos, D., Peters-Golden, M., Silva, C.L., and Faccioli, L.H. (2007). Inhibition of leukotriene biosynthesis abrogates the host control of Mycobacterium tuberculosis. Microbes Infect. 9, 483–489.10.1016/j.micinf.2007.01.006Search in Google Scholar PubMed PubMed Central
Peres-Buzalaf, C., de Paula, L., Frantz, F.G., Soares, E.M., Medeiros, A.I., Peters-Golden, M., Silva, C.L., and Faccioli, L.H. (2011). Control of experimental pulmonary tuberculosis depends more on immunostimulatory leukotrienes than on the absence of immunosuppressive prostaglandins. Prostaglandins Leukot. Essent. Fatty Acids 85, 75–81.10.1016/j.plefa.2011.04.024Search in Google Scholar PubMed PubMed Central
Petersen, M.M., Steadman, R., and Williams, J.D. (1992). Protein kinase C activation modulates tumour necrosis factor-alpha priming of human neutrophils for zymosan-induced leukotriene B4 release. Immunology 75, 275–280.Search in Google Scholar
Peters-Golden, M. and Henderson, W.R., Jr (2007). Leukotrienes. N. Engl. J. Med. 357, 1841–1854.10.1056/NEJMra071371Search in Google Scholar PubMed
Peters-Golden, M., McNish, R.W., Brieland, J.K., and Fantone, J.C. (1990). Diminished protein kinase C-activated arachidonate metabolism accompanies rat macrophage differentiation in the lung. J. Immunol. 144, 4320–4326.10.4049/jimmunol.144.11.4320Search in Google Scholar
Pufahl, L., Katryniok, C., Schnur, N., Sorg, B.L., Metzner, J., Grez, M., and Steinhilber, D. (2012). Trichostatin A induces 5-lipoxygenase promoter activity and mRNA expression via inhibition of histone deacetylase 2 and 3. J. Cell. Mol. Med. 16, 1461–1473.10.1111/j.1582-4934.2011.01420.xSearch in Google Scholar PubMed PubMed Central
Ramaswamy, K., Kumar, P., and He, Y.X. (2000). A role for parasite-induced PGE2 in IL-10-mediated host immunoregulation by skin stage schistosomula of Schistosoma mansoni. J. Immunol. 165, 4567–4574.10.4049/jimmunol.165.8.4567Search in Google Scholar PubMed
Robinson, D.S., Hamid, Q., Ying, S., Tsicopoulos, A., Barkans, J., Bentley, A.M., Corrigan, C., Durham, S.R., and Kay, A.B. (1992). Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304.10.1056/NEJM199201303260504Search in Google Scholar
Sadikot, R.T., Zeng, H., Azim, A.C., Joo, M., Dey, S.K., Breyer, R.M., Peebles, R.S., Blackwell, T.S., and Christman, J.W. (2007). Bacterial clearance of Pseudomonas aeruginosa is enhanced by the inhibition of COX-2. Eur. J. Immunol. 37, 1001–1009.10.1002/eji.200636636Search in Google Scholar
Salimi, M., Stöger, L., Liu, W., Go, S., Pavord, I., Klenerman, P., Ogg, G., and Xue, L. (2017). Cysteinyl leukotriene E4 activates human ILC2s and enhances the effect of prostaglandin D2 and epithelial cytokines. J. Exp. Med. 210, 2939–2950.10.1084/jem.20130351Search in Google Scholar
Samuelsson, B. (1983). Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220, 568–575.10.1126/science.6301011Search in Google Scholar
Samuelsson, B., Granström, E., Green, K., Hamberg, M., and Hammarström, S. (1975). Prostaglandins. Annu. Rev. Biochem. 44, 669–695.10.1146/annurev.bi.44.070175.003321Search in Google Scholar
Scandella, E., Men, Y., Gillessen, S., Förster, R., and Groettrup, M. (2002). Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 100, 1354–1361.10.1182/blood-2001-11-0017Search in Google Scholar
Schade, U.F. (1987). The effect of endotoxin on the lipoxygenase-mediated conversion of exogenous and endogenous arachidonic acid in mouse peritoneal macrophages. Prostaglandins 34, 385–400.10.1016/0090-6980(87)90084-0Search in Google Scholar
Schaljo, B., Kratochvill, F., Gratz, N., Sadzak, I., Sauer, I., Hammer, M., Vogl, C., Strobl, B., Müller, M., Blackshear, P.J., et al. (2009). Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10. J. Immunol. 183, 1197–1206.10.4049/jimmunol.0803883Search in Google Scholar PubMed PubMed Central
Schmidt, L.M., Belvisi, M.G., Bode, K.A., Bauer, J., Schmidt, C., Suchy, M.-T., Tsikas, D., Scheuerer, J., Lasitschka, F., Gröne, H.-J., et al. (2011). Bronchial epithelial cell-derived prostaglandin E2 dampens the reactivity of dendritic cells. J. Immunol. 186, 2095–2105.10.4049/jimmunol.1002414Search in Google Scholar PubMed
Secatto, A., Rodrigues, L.C., Serezani, C.H., Ramos, S.G., Dias-Baruffi, M., Faccioli, L.H., and Medeiros, A.I. (2012). 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection. PLoS One 7, e31701.10.1371/journal.pone.0031701Search in Google Scholar PubMed PubMed Central
Secor, W.E., Powell, M.R., Morgan, J., Wynn, T.A., and Funk, C.D. (1998). Mice deficient for 5-lipoxygenase, but not leukocyte-type 12-lipoxygenase, display altered immune responses during infection with Schistosoma mansoni. Prostaglandins Other Lipid Mediat. 56, 291–304.10.1016/S0090-6980(98)00059-8Search in Google Scholar
Serezani, C.H., Kane, S., Medeiros, A.I., Cornett, A.M., Kim, S.-H., Marques, M.M., Lee, S.-P., Lewis, C., Bourdonnay, E., Ballinger, M.N., et al. (2012). PTEN directly activates the actin depolymerization factor cofilin-1 during PGE2-mediated inhibition of phagocytosis of fungi. Sci. Signal. 5, ra12.10.1126/scisignal.2002448Search in Google Scholar
Serhan, C.N. and Reardon, E. (1989). 15-Hydroxyeicosatetraenoic acid inhibits superoxide anion generation by human neutrophils: relationship to lipoxin production. Free Radic. Res. Commun. 7, 341–345.10.3109/10715768909087960Search in Google Scholar
Sheibanie, A.F., Khayrullina, T., Safadi, F.F., and Ganea, D. (2007). Prostaglandin E2 exacerbates collagen-induced arthritis in mice through the inflammatory interleukin-23/interleukin-17 axis. Arthritis Rheum. 56, 2608–2619.10.1002/art.22794Search in Google Scholar
Shirey, K.A., Lai, W., Pletneva, L.M., Karp, C.L., Divanovic, S., Blanco, J.C.G., and Vogel, S.N. (2014). Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology. Mucosal Immunol. 7, 549–557.10.1038/mi.2013.71Search in Google Scholar
Singh, V., Bhatia, H.S., Kumar, A., de Oliveira, A.C.P., and Fiebich, B.L. (2014). Histone deacetylase inhibitors valproic acid and sodium butyrate enhance prostaglandins release in lipopolysaccharide-activated primary microglia. Neuroscience 265, 147–157.10.1016/j.neuroscience.2014.01.037Search in Google Scholar
Sjölinder, M., Tornhamre, S., Werga, P., Edenius, C., and Lindgren, J.A. (1995). Phorbol ester-induced suppression of leukotriene C4 synthase activity in human granulocytes. FEBS Lett. 377, 87–91.10.1016/0014-5793(95)01303-2Search in Google Scholar
Spanbroek, R., Hildner, M., Köhler, A., Müller, A., Zintl, F., Kühn, H., Rådmark, O., Samuelsson, B., and Habenicht, A.J. (2001). IL-4 determines eicosanoid formation in dendritic cells by down-regulation of 5-lipoxygenase and up-regulation of 15-lipoxygenase 1 expression. Proc. Natl. Acad. Sci. USA 98, 5152–5157.10.1073/pnas.091076998Search in Google Scholar PubMed PubMed Central
Steadman, R., Petersen, M.M., Topley, N., Williams, D., Matthews, N., Spur, B., and Williams, J.D. (1990). Differential augmentation by recombinant human tumor necrosis factor-alpha of neutrophil responses to particulate zymosan and glucan. J. Immunol. 144, 2712–2718.10.4049/jimmunol.144.7.2712Search in Google Scholar
Steinhilber, D., Rådmark, O., and Samuelsson, B. (1993). Transforming growth factor beta upregulates 5-lipoxygenase activity during myeloid cell maturation. Proc. Natl. Acad. Sci. USA 90, 5984–5988.10.1073/pnas.90.13.5984Search in Google Scholar PubMed PubMed Central
Sturm, E.M., Schratl, P., Schuligoi, R., Konya, V., Sturm, G.J., Lippe, I.T., Peskar, B.A., and Heinemann, A. (2008). Prostaglandin E2 inhibits eosinophil trafficking through E-prostanoid 2 receptors. J. Immunol. 181, 7273–7283.10.4049/jimmunol.181.10.7273Search in Google Scholar PubMed
Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., De Medina, P., Monsarrat, B., Perret, B., Silvente-Poirot, S., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res. 51, 2105–2120.10.1194/jlr.M003657Search in Google Scholar PubMed PubMed Central
Suram, S., Brown, G.D., Ghosh, M., Gordon, S., Loper, R., Taylor, P.R., Akira, S., Uematsu, S., Williams, D.L., and Leslie, C.C. (2006). Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the β-glucan receptor. J. Biol. Chem. 281, 5506–5514.10.1074/jbc.M509824200Search in Google Scholar PubMed
Takafuji, S., Bischoff, S.C., De Weck, A.L., and Dahinden, C.A. (1991). IL-3 and IL-5 prime normal human eosinophils to produce leukotriene C4 in response to soluble agonists. J. Immunol. 147, 3855–3861.10.4049/jimmunol.147.11.3855Search in Google Scholar
Teloni, R., Giannoni, F., Rossi, P., Nisini, R., and Gagliardi, M.C. (2007). Interleukin-4 inhibits cyclo-oxygenase-2 expression and prostaglandin E production by human mature dendritic cells. Immunology 120, 83–89.10.1111/j.1365-2567.2006.02482.xSearch in Google Scholar PubMed PubMed Central
Thivierge, M., Doty, M., Johnson, J., Stanková, J., and Rola-Pleszczynski, M. (2000). IL-5 up-regulates cysteinyl leukotriene 1 receptor expression in HL-60 cells differentiated into eosinophils. J. Immunol. 165, 5221–5226.10.4049/jimmunol.165.9.5221Search in Google Scholar PubMed
Thomas, G.D., Rückerl, D., Maskrey, B.H., Whitfield, P.D., Blaxter, M.L., and Allen, J.E. (2012). The biology of nematode- and IL4Rα-dependent murine macrophage polarization in vivo as defined by RNA-Seq and targeted lipidomics. Blood 120, e93–e104.10.1182/blood-2012-07-442640Search in Google Scholar PubMed PubMed Central
Thorsen, S., Busch-Sørensen, M., and Søndergaard, J. (1989). Reduced neutrophil production of leukotriene B4 associated with AIDS. AIDS 3, 651–653.10.1097/00002030-198910000-00006Search in Google Scholar PubMed
Tobin, D.M., Vary, J.C., Ray, J.P., Walsh, G.S., Dunstan, S.J., Bang, N.D., Hagge, D.A., Khadge, S., King, M.-C., Hawn, T.R., et al. (2010). The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717–730.10.1016/j.cell.2010.02.013Search in Google Scholar PubMed PubMed Central
Toffoli da Silva, G., Espíndola, M.S., Fontanari, C., Rosada, R.S., Faccioli, L.H., Ramos, S.G., Rodrigues, V., and Frantz, F.G. (2016). 5-Lipoxygenase pathway is essential for the control of granuloma extension induced by Schistosoma mansoni eggs in lung. Exp. Parasitol. 167, 124–129.10.1016/j.exppara.2016.06.001Search in Google Scholar PubMed
Torregrosa Paredes, P., Esser, J., Admyre, C., Nord, M., Rahman, Q.K., Lukic, A., Rådmark, O., Grönneberg, R., Grunewald, J., Eklund, A., et al. (2012). Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy 67, 911–919.10.1111/j.1398-9995.2012.02835.xSearch in Google Scholar PubMed
Trian, T., Allard, B., Dupin, I., Carvalho, G., Ousova, O., Maurat, E., Bataille, J., Thumerel, M., Begueret, H., Girodet, P.-O., et al. (2015). House dust mites induce proliferation of severe asthmatic smooth muscle cells via an epithelium-dependent pathway. Am. J. Respir. Crit. Care Med. 191, 538–546.10.1164/rccm.201409-1582OCSearch in Google Scholar PubMed
Tripp, C.S., Needleman, P., Kassab, J.T., and Weinstock, J.V. (1988). Macrophages isolated from liver granulomas of murine Schistosoma mansoni synthesize predominantly TxA2 during the acute and chronic phases of infection. J. Immunol. 140, 3140–3143.10.4049/jimmunol.140.9.3140Search in Google Scholar
Valdez, P.A., Vithayathil, P.J., Janelsins, B.M., Shaffer, A.L., Williamson, P.R., and Datta, S.K. (2012). Prostaglandin E2 suppresses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17 expression in T cells. Immunity 36, 668–679.10.1016/j.immuni.2012.02.013Search in Google Scholar PubMed PubMed Central
von Moltke, J., Trinidad, N.J., Moayeri, M., Kintzer, A.F., Wang, S.B., van Rooijen, N., Brown, C.R., Krantz, B.A., Leppla, S.H., Gronert, K., et al. (2012). Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490, 107–111.10.1038/nature11351Search in Google Scholar PubMed PubMed Central
Werz, O., Klemm, J., Samuelsson, B., and Rådmark, O. (2000). 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc. Natl. Acad. Sci. USA 97, 5261–5266.10.1073/pnas.050588997Search in Google Scholar PubMed PubMed Central
Werz, O., Bürkert, E., Fischer, L., Szellas, D., Dishart, D., Samuelsson, B., Rådmark, O., and Steinhilber, D. (2002). Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J. 16, 1441–1443.10.1096/fj.01-0909fjeSearch in Google Scholar PubMed
Wilson, G.A., Butcher, L.M., Foster, H.R., Feber, A., Roos, C., Walter, L., Woszczek, G., Beck, S., and Bell, C.G. (2014). Human-specific epigenetic variation in the immunological Leukotriene B4 Receptor (LTB4R/BLT1) implicated in common inflammatory diseases. Genome Med. 6, 19.10.1186/gm536Search in Google Scholar PubMed PubMed Central
Woszczek, G., Chen, L.-Y., Nagineni, S., and Shelhamer, J.H. (2008). IL-10 inhibits cysteinyl leukotriene-induced activation of human monocytes and monocyte-derived dendritic cells. J. Immunol. 180, 7597–7603.10.4049/jimmunol.180.11.7597Search in Google Scholar PubMed PubMed Central
Wüthrich, M., Gern, B., Hung, C.Y., Ersland, K., Rocco, N., Pick-Jacobs, J., Galles, K., Filutowicz, H., Warner, T., Evans, M., et al. (2011). Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J. Clin. Invest. 121, 554–568.10.1172/JCI43984Search in Google Scholar PubMed PubMed Central
Xue, L., Fergusson, J., Salimi, M., Panse, I., Ussher, J.E., Hegazy, A.N., Vinall, S.L., Jackson, D.G., Hunter, M.G., Pettipher, R., et al. (2015). Prostaglandin D2 and leukotriene E4 synergize to stimulate diverse TH2 functions and TH2 cell/neutrophil crosstalk. J. Allergy Clin. Immunol. 135, 1358–1366.10.1016/j.jaci.2014.09.006Search in Google Scholar PubMed PubMed Central
Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., Sugimoto, Y., and Narumiya, S. (2009). Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat. Med. 15, 633–640.10.1038/nm.1968Search in Google Scholar PubMed
Yong, E.C., Chi, E.Y., and Henderson, W.R. (1994). Toxoplasma gondii alters eicosanoid release by human mononuclear phagocytes: role of leukotrienes in interferon gamma-induced antitoxoplasma activity. J. Exp. Med. 180, 1637–1648.10.1084/jem.180.5.1637Search in Google Scholar PubMed PubMed Central
Zhou, W., Hashimoto, K., Goleniewska, K., O’Neal, J.F., Ji, S., Blackwell, T.S., Fitzgerald, G.A., Egan, K.M., Geraci, M.W., and Peebles, R.S. (2007). Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. J. Immunol. 178, 702–710.10.4049/jimmunol.178.2.702Search in Google Scholar PubMed
Zhou, W., Toki, S., Zhang, J., Goleniewksa, K., Newcomb, D.C., Cephus, J.Y., Dulek, D.E., Bloodworth, M.H., Stier, M.T., Polosuhkin, V., et al. (2016). Prostaglandin I2 signaling and inhibition of group 2 innate lymphoid cell responses. Am. J. Respir. Crit. Care Med. 193, 31–42.10.1164/rccm.201410-1793OCSearch in Google Scholar PubMed PubMed Central
Zoccal, K.F., Sorgi, C.A., Hori, J.I., Paula-Silva, F.W.G., Arantes, E.C., Serezani, C.H., Zamboni, D.S., and Faccioli, L.H. (2016). Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality. Nat. Commun. 7, 10760.10.1038/ncomms10760Search in Google Scholar PubMed PubMed Central
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Oxidised protein metabolism: recent insights
- Immune-regulation and -functions of eicosanoid lipid mediators
- Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications
- Progress in understanding the molecular oxygen paradox – function of mitochondrial reactive oxygen species in cell signaling
- Research Articles/Short Communications
- Protein Structure and Function
- Production of recombinant porin from Y. pseudotuberculosis in a water-soluble form for pseudotuberculosis diagnostics
- Membranes, Lipids, Glycobiology
- Functional control of polypeptide GalNAc-transferase 3 through an acetylation site in the C-terminal lectin domain
- Cell Biology and Signaling
- Human U3 protein 14a plays an anti-apoptotic role in cancer cells
- Cellular and plasma nitrite levels in myeloid leukemia: a pathogenetic decrease
Articles in the same Issue
- Frontmatter
- Reviews
- Oxidised protein metabolism: recent insights
- Immune-regulation and -functions of eicosanoid lipid mediators
- Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications
- Progress in understanding the molecular oxygen paradox – function of mitochondrial reactive oxygen species in cell signaling
- Research Articles/Short Communications
- Protein Structure and Function
- Production of recombinant porin from Y. pseudotuberculosis in a water-soluble form for pseudotuberculosis diagnostics
- Membranes, Lipids, Glycobiology
- Functional control of polypeptide GalNAc-transferase 3 through an acetylation site in the C-terminal lectin domain
- Cell Biology and Signaling
- Human U3 protein 14a plays an anti-apoptotic role in cancer cells
- Cellular and plasma nitrite levels in myeloid leukemia: a pathogenetic decrease