Abstract
The cathepsin family of lysosomal proteases is increasingly being recognized for their altered expression in cancer and role in facilitating tumor progression. The aspartyl protease cathepsin E is overexpressed in several cancers and has been investigated as a biomarker for pancreatic ductal adenocarcinoma (PDAC). Here we show that cathepsin E expression in mouse PDAC tumors is increased by more than 400-fold when compared to healthy pancreatic tissue. Cathepsin E accumulates over the course of disease progression and accounts for more than 3% of the tumor protein in mice with end-stage disease. Through immunoblot analysis we determined that only procathepsin E exists in mouse PDAC tumors and cell lines derived from these tumors. By decreasing the pH, this procathepsion E is converted to the mature form, resulting in an increase in proteolytic activity. Although active site inhibitors can bind procathepsin E, treatment of PDAC mice with the aspartyl protease inhibitor ritonavir did not decrease tumor burden. Lastly, we used multiplex substrate profiling by mass spectrometry to identify two synthetic peptides that are hydrolyzed by procathepsin E near neutral pH. This work represents a comprehensive analysis of procathepsin E in PDAC and could facilitate the development of improved biomarkers for disease detection.
Acknowledgments
A.J.O. and C.S.C. were supported by the Program for Breakthrough Biomedical Research (PBBR) and the Sandler Foundation. We gratefully acknowledge additional funds that were provided from NIH CA 185689, NIH CA 186077, and NIH CA 196276 to C.S.C. S.L.I was supported by NIH Pharmaceutical Sciences and Pharmacogenomics Training Grant T32GM008155.
References
Abd-Elgaliel, W.R., Cruz-Monserrate, Z., Wang, H., Logsdon, C.D., and Tung, C.H. (2013). Pancreatic cancer-associated Cathepsin E as a drug activator. J. Control Release 167, 221–227.10.1016/j.jconrel.2013.02.007Search in Google Scholar PubMed PubMed Central
Achour, O., Ashraf, Y., Bridiau, N., Kacem, M., Poupard, N., Bordenave-Juchereau, S., Sannier, F., Lamerant-Fayel, N., Kieda, C., Liaudet-Coopman, E., et al. (2016). Alteration of cathepsin D trafficking induced by hypoxia and extracellular acidification in MCF-7 breast cancer cells. Biochimie 121, 123–130.10.1016/j.biochi.2015.11.007Search in Google Scholar PubMed
Beaujouin, M., Prébois, C., Derocq, D., Laurent-Matha, V., Masson, O., Pattingre, S., Coopman, P., Bettache, N., Grossfield, J., Hollingsworth, R.E., et al. (2010). Pro-cathepsin D interacts with the extracellular domain of the β chain of LRP1 and promotes LRP1-dependent fibroblast outgrowth. J. Cell Sci. 123, 3336–3346.10.1242/jcs.070938Search in Google Scholar PubMed PubMed Central
Bergers, G., Javaherian, K., Lo, K., Folkman, J., and Hanahan, D. (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–811.10.1126/science.284.5415.808Search in Google Scholar PubMed
Bibo-Verdugo, B., O’Donoghue, A.J., Rojo-Arreola, L., Craik, C.S., and García-Carreño, F. (2016). Complementary proteomic and biochemical analysis of peptidases in lobster gastric juice uncovers the functional role of individual enzymes in food digestion. Mar. Biotechnol. 18, 201–214.10.1007/s10126-015-9681-5Search in Google Scholar PubMed
Buchholz, M., Braun, M., Heidenblut, A., Kestler, H.A., Klöppel, G., Schmiegel, W., Hahn, S.A., Lüttges, J., and Gress, T.M. (2005). Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene 24, 6626–6636.10.1038/sj.onc.1208804Search in Google Scholar PubMed
Burster, T., Reich, M., Zaidi, N., Voelter, W., Boehm, B.O., and Kalbacher, H. (2008). Cathepsin E regulates the presentation of tetanus toxin C-fragment in PMA activated primary human B cells. Biochem. Biophys. Res. Commun. 377, 1299–1303.10.1016/j.bbrc.2008.10.162Search in Google Scholar PubMed
Cappiello, M.G., Wu, Z., Scott, B.B., McGeehan, G.M., and Harrison, R.K. (2004). Purification and characterization of recombinant human cathepsin E expressed in human kidney cell line 293. Protein Expres. Purif. 37, 53–60.10.1016/j.pep.2004.05.013Search in Google Scholar PubMed
Chain, B.M., Free, P., Medd, P., Swetman, C., Tabor, A.B., and Terrazzini, N. (2005). The expression and function of cathepsin E in dendritic cells. J. Immunol. 174, 1791–1800.10.4049/jimmunol.174.4.1791Search in Google Scholar PubMed
Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J., and Gevaert, K. (2009). Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787.10.1038/nmeth1109-786Search in Google Scholar PubMed
Costello, E., Greenhalf, W., and Neoptolemos, J.P. (2012). New biomarkers and targets in pancreatic cancer and their application to treatment. Nat. Rev. Gastroenterol. 9, 435–444.10.1038/nrgastro.2012.119Search in Google Scholar PubMed
Cruz-Monserrate, Z., Abd-Elgaliel, W., and Logsdon, C. (2012). Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models. Gut 61, 1315–1322.10.1136/gutjnl-2011-300544Search in Google Scholar PubMed PubMed Central
Cruz-Monserrate, Z., Roland, C.L., Deng, D., Arumugam, T., Moshnikova, A., Andreev, O.A., Reshetnyak, Y.K., and Logsdon, C.D. (2014). Targeting pancreatic ductal adenocarcinoma acidic microenvironment. Sci. Rep. 4, 4410.10.1038/srep04410Search in Google Scholar PubMed PubMed Central
Dunn, B.M. (2002). Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem. Rev. 102 4431–4458.10.1021/cr010167qSearch in Google Scholar PubMed
Folkman, J., Watson, K., Ingber, D., and Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61.10.1038/339058a0Search in Google Scholar PubMed
Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., Hanahan, D., and Joyce, J.A. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 24, 543–556.10.1101/gad.1407406Search in Google Scholar PubMed PubMed Central
Gocheva, V., Wang, H., Gadea, B.B., Shree, T., Hunter, K.E., Garfall, A.L., Berman, T., and Joyce, J.A. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255.10.1158/1538-7445.AM10-LB-379Search in Google Scholar
Gopalakrishnan, M.M., Grosch, H.-W., Locatelli-Hoops, S., Werth, N., Smolenová, E., Nettersheim, M., and Hasilik, A. (2004). Purified recombinant human prosaposin forms oligomers that bind procathepsin D and affect its autoactivation. Biochem. J. 383, 507–515.10.1042/BJ20040175Search in Google Scholar PubMed PubMed Central
Hezel, A.F., Kimmelman, A.C., Stanger, B.Z., Bardeesy, N., and Depinho, R.A. (2006). Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 20, 1218–1249.10.1101/gad.1415606Search in Google Scholar PubMed
Impens, F., Colaert, N., Helsens, K., Ghesquière, B., Timmerman, E., De Bock, P.J., Chain, B.M., Vandekerckhove, J., and Gevaert, K. (2010). A quantitative proteomics design for systematic identification of protease cleavage events. Mol. Cell. Proteomics 9, 2327–2333.10.1074/mcp.M110.001271Search in Google Scholar PubMed PubMed Central
Joyce, J.A. and Hanahan, D. (2004). Multiple roles for cysteine cathepsins in cancer. Cell Cycle 3, 1516–1519.10.4161/cc.3.12.1289Search in Google Scholar
Joyce, J.A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F.-Y., Greenbaum, D.C., Hager, J.H., Bogyo, M., and Hanahan, D. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453.10.1016/S1535-6108(04)00111-4Search in Google Scholar
Keliher, E.J., Reiner, T., Earley, S., Klubnick, J., Tassa, C., Lee, A.J., Ramaswamy, S., Bardeesy, N., Hanahan, D., Depinho, R.A., et al. (2013). Targeting cathepsin E in pancreatic cancer by a small molecule allows in vivo detection. Neoplasia 15, 684–693.10.1593/neo.13276Search in Google Scholar PubMed PubMed Central
Kempf, D.J., Sham, H.L., Marsh, K.C., Flentge, C.A., Betebenner, D., Green, B.E., McDonal, E., Vasavanonda, S., Saldivar, A., Wideburg, N.E., et al. (1998). Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem. 2623, 602–617.10.1021/jm970636+Search in Google Scholar PubMed
Kessenbrock, K., Plaks, V., and Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67.10.1016/j.cell.2010.03.015Search in Google Scholar PubMed PubMed Central
Khalkhali-Ellis, Z. and Hendrix, M.J.C. (2014). Two faces of cathepsin D: physiological guardian angel and pathological demon. Biol. Med. 6, 1000206.10.4172/0974-8369.1000206Search in Google Scholar PubMed PubMed Central
Laurent-Matha, V., Garcia, M., Rochefort, H., Glondu, M., and Coopman, P. (2001). A mutated cathepsin-D devoid of its catalytic activity stimulates the growth of cancer cells. Oncogene 20, 6920–6929.10.1038/sj.onc.1204843Search in Google Scholar PubMed
Laurent-Matha, V., Lucas, A., Huttler, S., Sandhoff, K., Garcia, M., and Rochefort, H. (2002). Procathepsin D interacts with prosaposin in cancer cells but its internalization is not mediated by LDL receptor-related protein. Exp. Cell. Res. 277, 210–219.10.1006/excr.2002.5556Search in Google Scholar PubMed
Laurent-Matha, V., Huesgen, P.F., Masson, O., Derocq, D., Prebois, C., Gary-Bobo, M., Lecaille, F., Rebière, B., Meurice, G., Oréar, C., et al. (2012). Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB J. 26, 5172–5181.10.1096/fj.12-205229Search in Google Scholar PubMed
LeBeau, A.M., Lee, M., Murphy, S.T., Hann, B.C., Warren, R.S., Delos Santos, R., Kurhanewicz, J., Hanash, S.M., VanBrocklin, H.F., and Craik, C.S. (2013). Imaging a functional tumorigenic biomarker in the transformed epithelium. Proc. Natl. Acad. Sci. USA 110, 93–98.10.1073/pnas.1218694110Search in Google Scholar PubMed PubMed Central
Li, H., Li, Y., Cui, L., Wang, B., Cui, W., Li, M., and Cheng, Y. (2014). Monitoring pancreatic carcinogenesis by the molecular imaging of cathepsin E in vivo using confocal laser endomicroscopy. PLoS One 9, 106566.10.1371/journal.pone.0106566Search in Google Scholar PubMed PubMed Central
Lyo, V., Cattaruzza, F., Kim, T.N., Walker, A.W., Paulick, M., Cox, D., Cloyd, J., and Kirkwood, K.S. (2012). Active cathepsins B, L, and S in murine and human pancreatitis. Am. J. Physiol. Gastr. L. 303, 894–903.10.1152/ajpgi.00073.2012Search in Google Scholar PubMed PubMed Central
Mason, S.D. and Joyce, J.A. (2011). Proteolytic networks in cancer. Trends Cell Biol. 21, 228–237.10.1016/j.tcb.2010.12.002Search in Google Scholar PubMed PubMed Central
Masson, O., Bach, A.-S., Derocq, D., Prébois, C., Laurent-Matha, V., Pattingre, S., and Liaudet-Coopman, E. (2010). Pathophysiological functions of cathepsin D: targeting its catalytic activity versus its protein binding activity? Biochimie 92, 1635–1643.10.1016/j.biochi.2010.05.009Search in Google Scholar PubMed
Mohamed, M.M. and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775.10.1038/nrc1949Search in Google Scholar PubMed
Morris, J.P., Wang, S.C., and Hebrok, M. (2010). KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 10, 683–695.10.1038/nrc2899Search in Google Scholar PubMed PubMed Central
Mota, F., Kanan, J., Rayment, N., Mould, T., Singer, A., and Chain, B.M. (1997). Cathepsin E expression by normal and premalignant cervical epithelium. Am. J. Pathol. 150, 1223–1229.Search in Google Scholar
Nishioku, T., Hashimoto, K., Yamashita, K., Liou, S.-Y., Kagamiishi, Y., Maegawa, H., Katsube, N., Peters, C., von Figura, K., Saftig, P., et al. (2002). Involvement of cathepsin E in exogenous antigen processing in primary cultured murine microglia. J. Biol. Chem. 277, 4816–4822.10.1074/jbc.M108382200Search in Google Scholar PubMed
Nolan-stevaux, O., Lau, J., Truitt, M.L., Chu, G.C., Hebrok, M., Hanahan, D., and Ferna, M.E. (2009). GLI1 is regulated through Smoothened- independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev. 1, 24–36.10.1101/gad.1753809Search in Google Scholar PubMed PubMed Central
O’Donoghue, A.J., Eroy-reveles, A.A., Knudsen, G.M., Ingram, J., Zhou, M., Statnekov, J.B., Greninger, A.L., Hostetter, D.R., Qu, G., Maltby, D.A., et al. (2012). Global identification of peptidase specificity by multiplex substrate profiling. Nat. Methods 9, 1095–1100.10.1038/nmeth.2182Search in Google Scholar PubMed PubMed Central
Ostermann, N., Gerhartz, B., Worpenberg, S., Trappe, J., and Eder, J. (2004). Crystal structure of an activation intermediate of cathepsin E. J. Mol. Biol. 342, 889–899.10.1016/j.jmb.2004.07.073Search in Google Scholar PubMed
Rao-Naik, C., Guruprasad, K., Batley, B., Rapundalo, S., Hill, J., Blundell, T., Kay, J., and Dunn, B.M. (1995). Exploring the binding preferences/specificity in the active site of human cathepsin E. Proteins 181, 168–181.10.1002/prot.340220209Search in Google Scholar
Reid, A., Valler, M., and Kay, J. (1986). Immunolocalisation of cathepsin D in normal and neoplastic human tissues. J. Clin. Pathol. 39, 1323–1330.10.1136/jcp.39.12.1323Search in Google Scholar
Richter, C., Tanaka, T., and Yada, R.Y. (1998). Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin. Biochem. J. 490, 481–490.10.1042/bj3350481Search in Google Scholar
Ringel, J., Jesnowski, R., Moniaux, N., Lüttges, J., Ringel, J., Choudhury, A., Batra, S.K., Klöppel, G., and Löhr, M. (2006). Aberrant expression of a disintegrin and metalloproteinase 17/tumor necrosis factor-α converting enzyme increases the malignant potential in human pancreatic ductal adenocarcinoma. Cancer Res. 66, 9045–9053.10.1158/0008-5472.CAN-05-3287Search in Google Scholar
Sakai, H., Saku, T., Yuzo, K., and Yamamolo, K. (1989). Quantitation and immunohistochemical localization of cathepsins E and D in rat tissues and blood cells. Biochim. Biophys. Acta 991, 367–375.10.1016/0304-4165(89)90130-XSearch in Google Scholar
Sastradipura, D.F., Nakanishi, H., Tsukuba, T., Nishishita, K., Sakai, H., Kato, Y., Gotow, T., and Yamamoto, K. (2002). Identification of cellular compartments involved in processing of cathepsin E in primary cultures of rat microglia. J. Neurochem. 70, 2045–2056.10.1046/j.1471-4159.1998.70052045.xSearch in Google Scholar PubMed
Sevenich, L. and Joyce, J.A. (2014). Pericellular proteolysis in cancer. Genes Dev. 28, 2331–2347.10.1101/gad.250647.114Search in Google Scholar PubMed PubMed Central
Sevenich, L., Bowman, R.L., Mason, S.D., Quail, D.F., Rapaport, F., Elie, B.T., Brogi, E., Brastianos, P.K., Hahn, W.C., Holsinger, L.J., et al. (2014). Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16, 876–888.10.1038/ncb3011Search in Google Scholar PubMed PubMed Central
Tsukuba, T., Okamoto, K., Okamoto, Y., Yanagawa, M., Kohmura, K., Yasuda, Y., Uchi, H., Nakahara, T., Furue, M., Nakayama, K., et al. (2003). Association of cathepsin E deficiency with development of atopic dermatitis. J. Biochem. 134, 893–902.10.1093/jb/mvg216Search in Google Scholar PubMed
Tsukuba, T., Yamamoto, S., Yanagawa, M., Okamoto, K., Okamoto, Y., Nakayama, K.I., Kadowaki, T., and Yamamoto, K. (2006). Cathepsin E-deficient mice show increased susceptibility to bacterial infection associated with the decreased expression of multiple cell surface Toll-like receptors. J. Biochem. 140, 57–66.10.1093/jb/mvj132Search in Google Scholar PubMed
Ullmann, R., Morbini, P., Halbwedl, I., Bongiovanni, M., Gogg-Kammerer, M., Papotti, M., Gabor, S., Renner, H., and Popper, H.H. (2004). Protein expression profiles in adenocarcinomas and squamous cell carcinomas of the lung generated using tissue microarrays. J. Pathol. 203, 798–807.10.1002/path.1584Search in Google Scholar PubMed
Uno, K., Azuma, T., Nakajima, M., Yasuda, K., Hayakumo, T., Mukai, H., Sakai, T., and Kawai, K. (2000). Clinical significance of cathepsin E in pancreatic juice in the diagnosis of pancreatic ductal adenocarcinoma. J. Gastroenterol. Hepatol. 15, 1333–1338.10.1046/j.1440-1746.2000.2351.xSearch in Google Scholar
Yasuda, Y., Kageyama, T., Akamine, A., Shibata, M., Kominami, E., Uchiyama, Y., and Yamamoto, K. (1999). Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J. Biochem. 125, 1137–1143.10.1093/oxfordjournals.jbchem.a022396Search in Google Scholar PubMed
Yasuda, Y., Kohmura, K., Kadowaki, T., Tsukuba, T., and Yamamoto, K. (2005). A new selective substrate for cathepsin E based on the cleavage site sequence of α2-macroglobulin. Biol. Chem. 386, 299–305.10.1515/BC.2005.036Search in Google Scholar PubMed
Zaidi, N. and Kalbacher, H. (2008). Cathepsin E: a mini review. Biochem. Biophys. Res. Commun. 367, 517–522.10.1016/j.bbrc.2007.12.163Search in Google Scholar PubMed
Zaidi, N., Herrmann, T., Voelter, W., and Kalbacher, H. (2007). Recombinant cathepsin E has no proteolytic activity at neutral pH. Biochem. Biophys. Res. Commun. 360, 51–55.10.1016/j.bbrc.2007.05.187Search in Google Scholar PubMed
Supplemental Material:
The online version of this article (DOI: 10.1515/hsz-2016-0138) offers supplementary material, available to authorized users.
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: proteolytic networks across cellular boundaries
- HIGHLIGHT: IPS 2015 – 9TH GENERAL MEETING OF THE INTERNATIONAL PROTEOLYSIS SOCIETY
- A personal journey with matrix metalloproteinases
- Type II transmembrane serine proteases as potential targets for cancer therapy
- Membrane trafficking and proteolytic activity of γ-secretase in Alzheimer’s disease
- Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches
- Tetraspanin 8 is an interactor of the metalloprotease meprin β within tetraspanin-enriched microdomains
- Procathepsin E is highly abundant but minimally active in pancreatic ductal adenocarcinoma tumors
- Granzyme B inhibits keratinocyte migration by disrupting epidermal growth factor receptor (EGFR)-mediated signaling
- Myeloid conditional deletion and transgenic models reveal a threshold for the neutrophil survival factor Serpinb1
- Probing catalytic rate enhancement during intramembrane proteolysis
- Human 20S proteasome activity towards fluorogenic peptides of various chain lengths
- Research Articles/Short Communications
- Protein Structure and Function
- Biophysical analysis of three novel profilin-1 variants associated with amyotrophic lateral sclerosis indicates a correlation between their aggregation propensity and the structural features of their globular state
- The potential of the Galleria mellonella innate immune system is maximized by the co-presentation of diverse antimicrobial peptides
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Highlight: proteolytic networks across cellular boundaries
- HIGHLIGHT: IPS 2015 – 9TH GENERAL MEETING OF THE INTERNATIONAL PROTEOLYSIS SOCIETY
- A personal journey with matrix metalloproteinases
- Type II transmembrane serine proteases as potential targets for cancer therapy
- Membrane trafficking and proteolytic activity of γ-secretase in Alzheimer’s disease
- Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches
- Tetraspanin 8 is an interactor of the metalloprotease meprin β within tetraspanin-enriched microdomains
- Procathepsin E is highly abundant but minimally active in pancreatic ductal adenocarcinoma tumors
- Granzyme B inhibits keratinocyte migration by disrupting epidermal growth factor receptor (EGFR)-mediated signaling
- Myeloid conditional deletion and transgenic models reveal a threshold for the neutrophil survival factor Serpinb1
- Probing catalytic rate enhancement during intramembrane proteolysis
- Human 20S proteasome activity towards fluorogenic peptides of various chain lengths
- Research Articles/Short Communications
- Protein Structure and Function
- Biophysical analysis of three novel profilin-1 variants associated with amyotrophic lateral sclerosis indicates a correlation between their aggregation propensity and the structural features of their globular state
- The potential of the Galleria mellonella innate immune system is maximized by the co-presentation of diverse antimicrobial peptides