Home Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress
Article
Licensed
Unlicensed Requires Authentication

Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress

  • Karl-Josef Dietz EMAIL logo and Rüdiger Hell
Published/Copyright: March 5, 2015

Abstract

In photosynthesizing chloroplasts, rapidly changing energy input, intermediate generation of strong reductants as well as oxidants and multiple participating physicochemical processes and pathways, call for efficient regulation. Coupling redox information to protein function via thiol modifications offers a powerful mechanism to activate, down-regulate and coordinate interdependent processes. Efficient thiol switching of target proteins involves the thiol-disulfide redox regulatory network, which is highly elaborated in chloroplasts. This review addresses the features of this network. Its conditional function depends on specificity of reduction and oxidation reactions and pathways, thiol redox buffering, but also formation of heterogeneous milieus by microdomains, metabolite gradients and macromolecular assemblies. One major player is glutathione. Its synthesis and function is under feedback redox control. The number of thiol-controlled processes and involved thiol switched proteins is steadily increasing, e.g., in tetrapyrrole biosynthesis, plastid transcription and plastid translation. Thus chloroplasts utilize an intricate and versatile redox regulatory network for intraorganellar and retrograde communication.


Corresponding author: Karl-Josef Dietz, Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501 Bielefeld, Germany, e-mail:

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG), in particular within the framework of the Schwerpunktprogramm SPP 1710.

References

Albrecht, S.C., Sobotta, M.C., Bausewein, D., Aller, I., Hell, R., Dick, T.P., and Meyer, A.J. (2014). Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. J. Biomolecular Screening 19, 379–386.10.1177/1087057113499634Search in Google Scholar PubMed

Alsharafa, K., Vogel, M.O., Oelze, M.L., Moore, M., Stingl, N., König, K., Friedman, H., Mueller, M.J., and Dietz, K.J. (2014). Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130424.10.1098/rstb.2013.0424Search in Google Scholar PubMed PubMed Central

Arsova, B., Hoja, U., Wimmelbacher, M., Greiner, E., Üstün, S., Melzer, M., Petersen, K., Lein, W., and Börnkeb, F. (2010). Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22, 1498–1515.10.1105/tpc.109.071001Search in Google Scholar PubMed PubMed Central

Baier, M. and Dietz, K.J. (2005). Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. J. Exp. Bot. 56, 1449–1462.10.1093/jxb/eri161Search in Google Scholar PubMed

Ball, L., Accotto, G.P., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Kular, B., Leyland, N., Mejia-Carranza, J., Reynolds, H., et al. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16, 2448–2462.10.1105/tpc.104.022608Search in Google Scholar PubMed PubMed Central

Bergmann, L. and Rennenberg, H. (1993). Glutathione metabolism in plants. In: Sulfur Nutrition and Assimilation in Higher Plants. Regulatory, Agricultural and Environmental Aspects. L.J. De Kok, I. Stulen, H. Rennenberg, C. Brunold, and W.E. Rauser, eds. (The Hague: SPB Academic Publishing), pp. 102–123.Search in Google Scholar

Bick, J.A., Setterdahl, A.T., Knaff, D.B., Chen, Y., Pitcher, L.H., Zilinskas, B.A., and Leustek, T. (2001). Regulation of the plant-type 5′-adenylyl sulfate reductase by oxidative stress. Biochemistry 40, 9040–9048.10.1021/bi010518vSearch in Google Scholar PubMed

Birk, J., Meyer, M., Aller, I., Hansen, H.G., Odermatt, A., Dick, T.P., Meyer, A.J, and Appenzeller-Herzog, C. (2013). Endoplasmic reticulum: reduced and oxidized glutathione revisited. J. Cell Sci. 126, 1604–1617.10.1242/jcs.117218Search in Google Scholar PubMed

Birke, H., Heeg, C., Wirtz, M., and Hell, R. (2013). Successful fertilization requires the presence of at least one major O-acetylserine(thiol)lyase for cysteine synthesis in pollen of Arabidopsis. Plant Physiol. 163, 959–972.10.1104/pp.113.221200Search in Google Scholar PubMed PubMed Central

Blanco, N.E., Ceccoli, R.D., Vía, M.V., Voss, I., Segretin, M.E., Bravo-Almonacid, F.F., Melzer, M., Hajirezaei, M.R., Scheibe, R., and Hanke, G.T. (2013). Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow. Plant Physiol. 161, 866–879.10.1104/pp.112.211078Search in Google Scholar PubMed PubMed Central

Chang, C.C., Slesak, I., Jordá, L., Sotnikov, A., Melzer, M., Miszalski, Z., Mullineaux, P.M., Parker, J.E., Karpinska, B., and Karpinski, S. (2009). Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol. 150, 670–683.10.1104/pp.109.135566Search in Google Scholar PubMed PubMed Central

de Lamotte-Guery, F., Miginiac-Maslow, M., Decottignies, P., Stein, M., Minard, P., and Jacquot, J.P. (1991). Mutation of a negatively charged amino acid in thioredoxin modifies its reactivity with chloroplastic enzymes. Eur. J. Biochem. 196, 287–294.10.1111/j.1432-1033.1991.tb15816.xSearch in Google Scholar

Dietz, K.J. (2008). Redox signal integration: from stimulus to networks and genes. Physiol. Plant 133, 459–468.10.1111/j.1399-3054.2008.01120.xSearch in Google Scholar

Dietz, K.J. (2011). Peroxiredoxins in plants and cyanobacteria. Antioxid. Redox Signal. 15, 1129–1159.10.1089/ars.2010.3657Search in Google Scholar

Gromes, R., Hothorn, M., Lenherr, E.D., Rybin, V., Scheffzek, K., and Rausch, T. (2008). The redox switch of γ-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants. Plant J. 54, 1063–1075.10.1111/j.1365-313X.2008.03477.xSearch in Google Scholar

Grzam, A., Martin, M., Hell, R., and Meyer, A. (2007). γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett. 581, 3131–3138.10.1016/j.febslet.2007.05.071Search in Google Scholar

Gutscher, M., Pauleau, A., Marty, L., Brach, T., Wabnitz, G., Samstag, Y., Meyer, A., and Dick, T. (2008). Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559.10.1038/nmeth.1212Search in Google Scholar

Gutscher, M., Sobotta, M.C., Wabnitz, G.H., Ballikaya, S., Meyer, A.J., Samstag, Y., and Dick, T.P. (2009). Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J. Biol. Chem. 284, 31532–31540.10.1074/jbc.M109.059246Search in Google Scholar

Heber, U.W. and Santarius, K.A. (1965). Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim. Biophys. Acta 109, 390–408.10.1016/0926-6585(65)90166-4Search in Google Scholar

Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., and Hell, R. (2008). Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20, 168–185.10.1105/tpc.107.056747Search in Google Scholar PubMed PubMed Central

Hell, R. and Bergmann, L. (1990). γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180, 603–612.10.1007/BF02411460Search in Google Scholar PubMed

Hell, R. and Kruse, C. (2007). Sulfur in biotic interactions of plants. In: Sulfur in Plants: An Ecological Perspective, M.J. Kok and J.D. Hal, eds. (Dordrecht, The Netherlands: Springer), pp. 197–224.10.1007/978-1-4020-5887-5_9Search in Google Scholar

Hell, R. and Wirtz, M. (2011). Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. The Arabidopsis Book 9, e0154.10.1199/tab.0154Search in Google Scholar

Herbette, S., Roeckel-Drevet, P., and Drevet, J.R. (2007). Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS J. 274, 2163–2180.10.1111/j.1742-4658.2007.05774.xSearch in Google Scholar

Heyno, E., Innocenti, G., Lemaire, S.D., Issakidis-Bourguet, E., and Krieger-Liszkay, A. (2014). Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 2013022.10.1098/rstb.2013.0228Search in Google Scholar

Hicks, L.M., Cahoon, R.E., Bonner, E.R., Rivard, R.S., Sheffield, J., and Jez, J.M. (2007). Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19, 2653–2661.10.1105/tpc.107.052597Search in Google Scholar

Hothorn, M., Wachter, A., Gromes, R., Stuwe, T., Rausch, T., and Scheffzek, K. (2006). Structural basis for the redox control of plant glutamate cysteine ligase. J. Biol. Chem. 281, 27557–27565.10.1074/jbc.M602770200Search in Google Scholar

Jun, K.O., Song, C.H., Kim, Y.B., An, J., Oh, J.H., and Choi, S.K. (2009). Activation of translation via reduction by thioredoxin-thioredoxin reductase in Saccharomyces cerevisiae. FEBS Lett. 583, 2804–2810.10.1016/j.febslet.2009.07.030Search in Google Scholar

Jez, J.M., Cahoon, R.E., and Chen, S. (2004). Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J. Biol. Chem. 279, 33463–33470.10.1074/jbc.M405127200Search in Google Scholar

Kirchsteiger, K., Ferrández, J., Pascual, M.B., González, M., and Cejudo, F.J. (2012). NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. Plant Cell 24, 1534–1548.10.1105/tpc.111.092304Search in Google Scholar

Klapheck, S., Latus, C., and Bergmann, L. (1987). Localization of glutathione synthetase and distribution of glutathione in leaf cells of Pisum sativum L. J. Plant Physiol. 131, 123–131.10.1016/S0176-1617(87)80273-0Search in Google Scholar

Kobayashi, Y., Köster, S., and Heber, U. (1982). Light-scattering, chlorophyll fluorescence and state of the adenylate system in illuminated spinach leaves. Biochim. Biophys. Acta 682, 44–54.10.1016/0005-2728(82)90117-7Search in Google Scholar

König, J., Muthuramalingam, M., and Dietz, K.J. (2012). Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Curr. Opin. Plant Biol. 15, 261–268.10.1016/j.pbi.2011.12.002Search in Google Scholar PubMed

König, J., Galliardt, H., Jütte, P., Schäper, S., Dittmann, L., and Dietz, K.J. (2013). The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone. J. Exp. Bot. 64, 3483–3497.10.1093/jxb/ert184Search in Google Scholar PubMed PubMed Central

Krupinska, K., Oetke, S., Desel, C., Mulisch, M., Schäfer, A., Hollmann, J., Kumlehn, J., and Hensel, G. (2014). WHIRLY1 is a major organizer of chloroplast nucleoids. Front. Plant Sci. 5, 432.10.3389/fpls.2014.00432Search in Google Scholar PubMed PubMed Central

Krüger, S., Niehl, A., Martin, M.C.L., Steinhauser, D., Donath, A., Hildebrandt, T., Romero, L.C., Hoefgen, R., Gotor, C., and Hesse, H. (2009). Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopis. Plant Cell Environ. 32, 349–367.10.1111/j.1365-3040.2009.01928.xSearch in Google Scholar

Laisk, A., Siebke, K., Gerst, U., Eichelmann, H., Oja, V., and Heber, U. (1991). Oscillations in photosynthesis are initiated and supported by imbalances in the supply of ATP and NADPH to the Calvin cycle. Planta 185, 554–562.10.1007/BF00202966Search in Google Scholar PubMed

Lim, B., Pasternak, M., Meyer, A.J., and Cobbett, C.S. (2014). Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance. Plant Biol. 16, 58–67.10.1111/plb.12033Search in Google Scholar PubMed

Marín-Navarro, J., Manuell, A.L., Wu, J.P., and Mayfield, S. (2007). Chloroplast translation regulation. Photosynth. Res. 94, 359–374.10.1007/s11120-007-9183-zSearch in Google Scholar PubMed

Martin, M.N., Saladores, P.H., Lambert, E., Hudson, A.O., and Leustek, T. (2007). Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiol. 144, 1715–1732.10.1104/pp.106.094409Search in Google Scholar PubMed PubMed Central

Marty, L., Siala, W., Schwarzlander, M., Fricker, M.D., Wirtz, M., Sweetlove, L.J., Meyer, Y., Meyer, A.J., Reichheld, J.-P., and Hell, R. (2009). The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 9109–9114.10.1073/pnas.0900206106Search in Google Scholar PubMed PubMed Central

Maughan, S.C., Pasternak, M., Cairns, N., Kiddle, G., Brach, T., Jarvis, R., Haas, F., Nieuwland, J., Lim, B., Muller, C., et al. (2010). Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc. Natl. Acad. Sci. USA 107, 2331–2336.10.1073/pnas.0913689107Search in Google Scholar PubMed PubMed Central

May, M., Vernoux, T., Leaver, C., Van Montagu, M., and Inze, D. (1998). Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot. 49, 649–667.10.1093/jxb/49.321.649Search in Google Scholar

Meyer, A.J. and Rausch, T. (2008). Biosynthesis, compartmentation and cellular functions of glutathione in plant cells. In: Sulfur Metabolism in Phototrophic Organisms, R. Hell, C. Dahl, D.B. Knaff and T. Leustek, eds. (Dordrecht, The Netherlands: Springer), pp. 161–184.10.1007/978-1-4020-6863-8_9Search in Google Scholar

Meyer, A.J., May, M.J., and Fricker, M. (2001). Quantitative in vivo measurement of glutathione in Arabidopsis cells. Plant J. 27, 67–78.10.1046/j.1365-313x.2001.01071.xSearch in Google Scholar PubMed

Meyer, A.J., Brach, T., Marty, L., Kreye, S., Rouhier, N., Jacquot, J.-P, and Hell, R. (2007). Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J. 52, 973–986.10.1111/j.1365-313X.2007.03280.xSearch in Google Scholar PubMed

Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L., Saindrenan, P., Gouia, H., Issakidis-Bourguet, E., Renou, J.P., et al. (2010). Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol. 153, 1144–1160.10.1104/pp.110.153767Search in Google Scholar PubMed PubMed Central

Miyake, C. (2010). Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol. 51, 1951–1963.10.1093/pcp/pcq173Search in Google Scholar PubMed

Moreno, J., Garcia-Murria, M.J., and Marin-Navarro, J. (2008). Redox modulation of Rubisco conformation and activity through its cysteine residues. J. Exp. Bot. 59, 1605–1614.10.1093/jxb/erm310Search in Google Scholar PubMed

Muthuramalingam, M., Matros, A., Scheibe, R., Mock, H.P., and Dietz, K.J. (2013). The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo. Front. Plant Sci. 4, 54.10.3389/fpls.2013.00054Search in Google Scholar PubMed PubMed Central

Noctor, G. and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249–279.10.1146/annurev.arplant.49.1.249Search in Google Scholar PubMed

Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., and Foyer, C.H. (2011). Glutathione. The Arabidopsis Book, e0142.10.1199/tab.0142Search in Google Scholar PubMed PubMed Central

Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., and Foyer, C.H. (2012). Glutathione in plants: an integrated overview. Plant Cell Environ. 35, 454–484.10.1111/j.1365-3040.2011.02400.xSearch in Google Scholar PubMed

Park, S.W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A.K., Andersson, M.X., Kittle, J.D., Ambavaram, M.M., Luan, S., et al. (2013). Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc. Natl. Acad. Sci. USA 110, 9559–9564.10.1073/pnas.1218872110Search in Google Scholar PubMed PubMed Central

Passaia, G., Queval, G., Bai, J., Margis-Pinheiro, M., and Foyer, C.H. (2014). The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. J. Exp. Bot. 65, 1403–1413.10.1093/jxb/ert486Search in Google Scholar PubMed PubMed Central

Pasternak, M., Lim, B., Wirtz, M., Hell, R., Cobbett, C.S., and Meyer, A.J. (2008). Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J. 53, 999–1012.10.1111/j.1365-313X.2007.03389.xSearch in Google Scholar PubMed

Paulose, B., Chhikara, S., Coomey, J., Jung, H.I., Vatamaniuk, O., and Dhankher, O.P. (2013). A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25, 4580–4595.10.1105/tpc.113.111815Search in Google Scholar PubMed PubMed Central

Peltier, J.B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A.J., Rutschow, H., and van Wijk, K.J. (2006). The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics 5, 114–133.10.1074/mcp.M500180-MCP200Search in Google Scholar PubMed

Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K.J. and Oelmüller, R. (2006). pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18, 176–197.10.1105/tpc.105.036392Search in Google Scholar PubMed PubMed Central

Pulido, P., Spínola, M.C., Kirchsteiger, K., Guinea, M., Pascual, M.B., Sahrawy, M., Sandalio, L.M., Dietz, K.J., González, M., and Cejudo, F.J. (2010). Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J. Exp. Bot. 61, 4043–4054.10.1093/jxb/erq218Search in Google Scholar PubMed PubMed Central

Puthiyaveetil, S., Ibrahim, I.M., and Allen, J.F. (2012). Oxidation-reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts. Plant Cell Environ. 35, 347–359.10.1111/j.1365-3040.2011.02349.xSearch in Google Scholar PubMed

Rausch, T. and Wachter, A. (2005). Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci. 10, 503–509.10.1016/j.tplants.2005.08.006Search in Google Scholar

Richter A.S. and Grimm, B. (2013). Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants. Front. Plant Sci. 4, 371.Search in Google Scholar

Richter, A.S., Peter, E., Rothbart, M., Schlicke, H., Toivola, J., Rintamäki, E., and Grimm, B. (2013). Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiol. 162, 63–73.10.1104/pp.113.217141Search in Google Scholar

Rochaix, J.D. (2013). Redox regulation of thylakoid protein kinases and photosynthetic gene expression. Antioxid. Redox Signal. 18, 2184–2201.10.1089/ars.2012.5110Search in Google Scholar

Rodriguez Milla, M.A., Maurer, A., Rodriguez Huete, A., and Gustafson, J.P. (2003). Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 36, 602–615.10.1046/j.1365-313X.2003.01901.xSearch in Google Scholar

Samol, I., Shapiguzov, A., Ingelsson, B., Fucile, G., Crèvecoeur, M., Vener, A.V., Rochaix, J.D., and Goldschmidt-Clermont, M. (2012). Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. Plant Cell 24, 2596–2609.10.1105/tpc.112.095703Search in Google Scholar

Scheibe, R. and Dietz, K.J. (2012). Redox-network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell Environ. 35, 202–216.10.1111/j.1365-3040.2011.02319.xSearch in Google Scholar

Schürmann, P. and Wolosiuk, R.A. (1978). Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase. Biochim. Biophys. Acta 522, 130–138.10.1016/0005-2744(78)90329-7Search in Google Scholar

Shikanai, T. (2014). Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Curr. Opin. Biotech. 26, 25–30.10.1016/j.copbio.2013.08.012Search in Google Scholar

Sivak, M., Dietz, K.J., Heber, U., and Walker, D.A. (1985). The relationship between light scattering and chlorophyll a fluorescence during oscillations in photosynthetic carbon assimilation. Arch. Biochem. Biophys. 237, 513–519.10.1016/0003-9861(85)90304-2Search in Google Scholar

Sobotta, M.C., Liou, W., Stöcker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64–70.10.1038/nchembio.1695Search in Google Scholar PubMed

Stonebloom, S., Brunkard, J.O., Cheung, A.C., Jiang, K., Feldman, L., and Zambryski, P. (2012). Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol. 158, 190–199.10.1104/pp.111.186130Search in Google Scholar PubMed PubMed Central

Ströher, E. and Dietz, K.J. (2008). The dynamic thiol-disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility. Physiol. Plant. 133, 566–583.10.1111/j.1399-3054.2008.01103.xSearch in Google Scholar PubMed

Takizawa, K., Cruz, J.A., Kanazawa, A., and Kramer, D.M. (2007). The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim. Biophys. Acta 1767, 1233–1244.10.1016/j.bbabio.2007.07.006Search in Google Scholar PubMed

Tausz, M., Sircelj, H., and Grill, D. (2004). The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J. Exp. Bot. 55, 1955–1962.10.1093/jxb/erh194Search in Google Scholar PubMed

Toivola, J., Nikkanen, L., Dahlström, K.M., Salminen, T.A., Lepistö, A., Vignols, H.F., and Rintamäki, E. (2013). Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains. Front. Plant Sci. 4, 389.10.3389/fpls.2013.00389Search in Google Scholar PubMed PubMed Central

Trebitsh, T. and Danon, A. (2001). Translation of chloroplast psbA mRNA is regulated by signals initiated by both photosystems II and I. Proc. Natl. Acad. Sci. USA 98, 12289–12294.10.1073/pnas.211440698Search in Google Scholar PubMed PubMed Central

Tzafrir, I., Pena-Muralla, R., Dickerman, A., Berg, M., Rogers, R., Hutchens, S., Sweeney, T.C., McElver, J., Aux, G., Patton, D., et al. (2004). Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 135, 1206–1220.10.1104/pp.104.045179Search in Google Scholar PubMed PubMed Central

Wachter, A., Wolf, S., Steininger, H., Bogs, J., and Rausch, T. (2005). Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J. 41, 15–30.10.1111/j.1365-313X.2004.02269.xSearch in Google Scholar PubMed

Walker, D.A. (1992). Concerning oscillations. Photosynth. Res. 34, 387–395.10.1007/BF00029813Search in Google Scholar PubMed

Wimmelbacher, M. and Börnke, F. (2014). Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana. J. Exp. Bot. 65, 2405–2413.10.1093/jxb/eru122Search in Google Scholar PubMed PubMed Central

Wittenberg, G., Levitan, A., Klein, T., Dangoor, I., Keren, N., and Danon, A. (2014). Knockdown of the Arabidopsis thaliana chloroplast protein disulfide isomerase 6 results in reduced levels of photoinhibition and increased D1 synthesis in high light. Plant J. 78, 1003–1013.10.1111/tpj.12525Search in Google Scholar PubMed

Xiang, C. and Oliver, D.J. (1998). Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10, 1539–1550.10.1105/tpc.10.9.1539Search in Google Scholar PubMed PubMed Central

Yoshida, K., Matsuoka, Y., Hara, S., Konno, H., and Hisabori, T. (2014). Distinct redox behaviors of chloroplast thiol enzymes and their relationships with photosynthetic electron transport in Arabidopsis thaliana. Plant Cell Physiol. 55, 1415–1425.10.1093/pcp/pcu066Search in Google Scholar PubMed

Yua, Q.B., Ma, Q., Kong, M.M., Zhao, T.T., Zhang, X.L., Zhou, Q., Huang, C., Chong, K., and Yang, Z.N. (2014). AtECB1/MRL7, a thioredoxin-like fold protein with disulfide reductase activity, regulates chloroplast gene expression and chloroplast biogenesis in Arabidopsis thaliana. Mol. Plant 7, 206–217.10.1093/mp/sst092Search in Google Scholar PubMed

Zaffagnini, M., Bedhomme, M., Lemaire, S.D., and Trost, P. (2012). The emerging roles of protein glutathionylation in chloroplasts. Plant Sci. 185–186, 86–96.10.1016/j.plantsci.2012.01.005Search in Google Scholar PubMed

Received: 2014-11-29
Accepted: 2015-3-2
Published Online: 2015-3-5
Published in Print: 2015-5-1

©2015 by De Gruyter

Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0281/html
Scroll to top button