Home Neuroendocrine control of satiation
Article
Licensed
Unlicensed Requires Authentication

Neuroendocrine control of satiation

  • Lori Asarian EMAIL logo and Thomas Bächler
Published/Copyright: April 16, 2014

Abstract

Eating is a simple behavior with complex functions. The unconscious neuroendocrine process that stops eating and brings a meal to its end is called satiation. Energy homeostasis is mediated accomplished through the control of meal size via satiation. It involves neural integrations of phasic negative-feedback signals related to ingested food and tonic signals, such as those related to adipose tissue mass. Energy homeostasis is accomplished through adjustments in meal size brought about by changes in these satiation signals. The best understood meal-derived satiation signals arise from gastrointestinal nutrient sensing. Gastrointestinal hormones secreted during the meal, including cholecystokinin, glucagon-like peptide 1, and PYY, mediate most of these. Other physiological signals arise from activation of metabolic-sensing neurons, mainly in the hypothalamus and caudal brainstem. We review both classes of satiation signal and their integration in the brain, including their processing by melanocortin, neuropeptide Y/agouti-related peptide, serotonin, noradrenaline, and oxytocin neurons. Our review is not comprehensive; rather, we discuss only what we consider the best-understood mechanisms of satiation, with a special focus on normally operating physiological mechanisms.


Corresponding author: Lori Asarian, Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland, Phone: +41 44 635 8836, Fax: +41 44 635 8932, E-mail:

Acknowledgments

The authors thank Professor Nori Geary for helpful discussions on the penultimate draft. L.A. is supported by NIH NIDDK 092608.

References

1. Leibel RL. Molecular physiology of weight regulation in mice and humans. Int J Obes 2008;32:S98–108.10.1038/ijo.2008.245Search in Google Scholar

2. Geary N, Grotschel H, Petry HP, Scharrer E. Meal patterns and body weight changes during insulin hyperphagia and postinsulin hypophagia. Behav Neural Biol 1981;31:435–42.10.1016/S0163-1047(81)91507-7Search in Google Scholar

3. Geary N, Grotschel H, Scharrer E. Blood metabolites and feeding during postinsulin hypophagia. Am J Physiol 1982;243:R304–11.10.1152/ajpregu.1982.243.3.R304Search in Google Scholar

4. Davies RF. Long- and short-term regulation of feeding patterns in the rat. J Comp Physiol Psychol 1977;91:574–85.10.1037/h0077335Search in Google Scholar

5. Strubbe JH, van Dijk G. The temporal organization of ingestive behaviour and its interaction with regulation of energy balance. Neurosci Biobehav Rev 2002;26:485–98.10.1016/S0149-7634(02)00016-7Search in Google Scholar

6. Leung PM, Horwitz BA. Free-feeding patterns of rats in response to changes in environmental temperature. Am J Physiol 1976;231:1220–4.10.1152/ajplegacy.1976.231.4.1220Search in Google Scholar

7. Vanderweele DA. Insulin and satiety from feeding in pancreatic-normal and diabetic rats. Physiol Behav 1993;54:477–85.10.1016/0031-9384(93)90239-CSearch in Google Scholar

8. Thomas DW, Scharrer E, Mayer J. Effects of alloxan induced diabetes on the feeding patterns of rats. Physiol Behav 1976;17:345–9.10.1016/0031-9384(76)90085-8Search in Google Scholar

9. Strubbe JH, Gorissen J. Meal patterning in the lactating rat. Physiol Behav 1980;25:775–7.10.1016/0031-9384(80)90383-2Search in Google Scholar

10. Eckel LA, Houpt TA, Geary N. Spontaneous meal patterns in female rats with and without access to running wheels. Physiol Behav 2000;70:397–405.10.1016/S0031-9384(00)00278-XSearch in Google Scholar

11. Enns MP, Grinker JA. Dietary self-selection and meal patterns of obese and lean Zucker rats. Appetite 1983;4:281–93.10.1016/S0195-6663(83)80021-XSearch in Google Scholar

12. Castonguay TW, Upton DE, Leung PM, Stern JS. Meal patterns in the genetically obese Zucker rat: a reexamination. Physiol Behav 1982;28:911–6.10.1016/0031-9384(82)90213-XSearch in Google Scholar

13. Eckel LA, Langhans W, Kahler A, Campfield LA, Smith FJ, Geary N. Chronic administration of OB protein decreases food intake by selectively reducing meal size in female rats. Am J Physiol 1998;275:R186–93.10.1152/ajpregu.1998.275.1.R186Search in Google Scholar

14. Kahler A, Geary N, Eckel LA, Campfield LA, Smith FJ, Langhans W. Chronic administration of OB protein decreases food intake by selectively reducing meal size in male rats. Am J Physiol 1998;275:R180–5.10.1152/ajpregu.1998.275.1.R180Search in Google Scholar

15. Levitsky DA. Feeding patterns of rats in response to fasts and changes in environmental conditions. Physiol Behav 1970;5:291–300.10.1016/0031-9384(70)90101-0Search in Google Scholar

16. Del Prete E, Balkowski G, Scharrer E. Meal pattern of rats during hyperphagia induced by longterm food restriction is affected by diet composition. Appetite 1994;23:79–86.10.1006/appe.1994.1036Search in Google Scholar

17. Penicaud L, Le Magnen J. Recovery of body weight following starvation or food restriction in rats. Neurosci Biobehav Rev 1980;4:47–52.10.1016/0149-7634(80)90048-2Search in Google Scholar

18. West DB, Greenwood MR, Marshall KA, Woods SC. Lithium chloride, cholecystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise. Appetite 1987;8:221–7.10.1016/0195-6663(87)90021-3Search in Google Scholar

19. Girardet C, Bonnet MS, Jdir R, Sadoud M, Thirion S, Tardivel C, Roux J, Lebrun B, Wanaverbecq N, Mounien L, Trouslard J, Jean A, Dallaporta M, Troadec JD. The food-contaminant deoxynivalenol modifies eating by targeting anorexigenic neurocircuitry. PloS One 2011;6:e26134.10.1371/journal.pone.0026134Search in Google Scholar PubMed PubMed Central

20. Flannery BM, Clark ES, Pestka JJ. Anorexia induction by the trichothecene deoxynivalenol (vomitoxin) is mediated by the release of the gut satiety hormone peptide YY. Toxicol Sci 2012;130:289–97.10.1093/toxsci/kfs255Search in Google Scholar PubMed PubMed Central

21. Varma M, Chai JK, Meguid MM, Yang ZJ. Gender differences in tumor-induced anorectic feeding pattern in Fischer-344 rats. Physiol Behav 2001;74:29–35.10.1016/S0031-9384(01)00569-8Search in Google Scholar

22. Smith GP. The controls of eating: a shift from nutritional homeostasis to behavioral neuroscience. Nutrition 2000;16:814–20.10.1016/S0899-9007(00)00457-3Search in Google Scholar

23. Levin BE, Magnan C, Dunn-Meynell A, Le Foll C. Metabolic sensing and the brain: who, what, where, and how? Endocrinology 2011;152:2552–7.10.1210/en.2011-0194Search in Google Scholar PubMed PubMed Central

24. Le Foll C, Dunn-Meynell AA, Miziorko HM, Levin BE. Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids. Diabetes 2014;63:1259–69.10.2337/db13-1090Search in Google Scholar PubMed PubMed Central

25. Tabarin A, Diz-Chaves Y, Consoli D, Monsaingeon M, Bale TL, Culler MD, Datta R, Drago F, Vale WW, Koob GF, Zorrilla EP, Contarino A. Role of the corticotropin-releasing factor receptor type 2 in the control of food intake in mice: a meal pattern analysis. Eur J Neurosci 2007;26:2303–14.10.1111/j.1460-9568.2007.05856.xSearch in Google Scholar PubMed PubMed Central

26. Cohen DA. Neurophysiological pathways to obesity: below awareness and beyond individual control. Diabetes 2008;57:1768–73.10.2337/db08-0163Search in Google Scholar PubMed PubMed Central

27. Farley C, Cook JA, Spar BD, Austin TM, Kowalski TJ. Meal pattern analysis of diet-induced obesity in susceptible and resistant rats. Obes Res 2003;11:845–51.10.1038/oby.2003.116Search in Google Scholar PubMed

28. Hariri N, Thibault L. Dietary obesity caused by a specific circadian eating pattern. Chronobiol Int 2011; 28:216–28.10.3109/07420528.2010.548614Search in Google Scholar PubMed

29. Wang L, Stengel A, Goebel M, Martinez V, Gourcerol G, Rivier J, Tache Y. Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice. Peptides 2011;32:51–9.10.1016/j.peptides.2010.10.017Search in Google Scholar PubMed PubMed Central

30. Fekete C, Legradi G, Mihaly E, Huang QH, Tatro JB, Rand WM, Emerson CH, Lechan RM. alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci 2000;20:1550–8.10.1523/JNEUROSCI.20-04-01550.2000Search in Google Scholar

31. Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013;305:R1215–67.10.1152/ajpregu.00446.2012Search in Google Scholar

32. Davis JD, Smith GP. Learning to sham feed: behavioral adjustments to loss of physiological postingestional stimuli. Am J Physiol 1990;259:R1228–35.10.1152/ajpregu.1990.259.6.R1228Search in Google Scholar

33. Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012;302:R1119–33.10.1152/ajpregu.00038.2012Search in Google Scholar

34. Johnson AW. Eating beyond metabolic need: how environmental cues influence feeding behavior. Trends Neurosci 2013;36:101–9.10.1016/j.tins.2013.01.002Search in Google Scholar

35. Booth DA. Satiety and appetite are conditioned reactions. Psychosom Med 1977;39:76–81.10.1097/00006842-197703000-00002Search in Google Scholar

36. Birch LL, Doub AE. Learning to eat: birth to age 2 y. Am J Clin Nutr 2014;99:723S–8S.10.3945/ajcn.113.069047Search in Google Scholar

37. Hwang ES, Hirayama BA, Wright EM. Distribution of the SGLT1 Na+/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine. Biochem Biophys Res Commun 1991;181:1208–17.10.1016/0006-291X(91)92067-TSearch in Google Scholar

38. Yoshida A, Takata K, Kasahara T, Aoyagi T, Saito S, Hirano H. Immunohistochemical localization of Na(+)-dependent glucose transporter in the rat digestive tract. Histochem J 1995;27:420–6.10.1007/BF02389029Search in Google Scholar

39. Balakrishnan A, Stearns AT, Rounds J, Irani J, Giuffrida M, Rhoads DB, Ashley SW, Tavakkolizadeh A. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (SGLT1). Surgery 2008;143:813–8.10.1016/j.surg.2008.03.018Search in Google Scholar PubMed PubMed Central

40. Stearns AT, Balakrishnan A, Rhoads DB, Tavakkolizadeh A. Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann Surg 2010;251:865–71.10.1097/SLA.0b013e3181d96e1fSearch in Google Scholar PubMed PubMed Central

41. Ritzel U, Fromme A, Ottleben M, Leonhardt U, Ramadori G. Release of glucagon-like peptide-1 (GLP-1) by carbohydrates in the perfused rat ileum. Acta Diabetol 1997;34:18–21.10.1007/s005920050059Search in Google Scholar PubMed

42. Sykes S, Morgan LM, English J, Marks V. Evidence for preferential stimulation of gastric inhibitory polypeptide secretion in the rat by actively transported carbohydrates and their analogues. J Endocrinol 1980;85:201–7.10.1677/joe.0.0850201Search in Google Scholar PubMed

43. Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 2009;52:289–98.10.1007/s00125-008-1202-xSearch in Google Scholar PubMed PubMed Central

44. Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM. Glucose sensing in L cells: a primary cell study. Cell Metab 2008;8:532–9.10.1016/j.cmet.2008.11.002Search in Google Scholar PubMed PubMed Central

45. Yoshikawa T, Inoue R, Matsumoto M, Yajima T, Ushida K, Iwanaga T. Comparative expression of hexose transporters (SGLT1, GLUT1, GLUT2 and GLUT5) throughout the mouse gastrointestinal tract. Histochem Cell Biol 2011;135:183–94.10.1007/s00418-011-0779-1Search in Google Scholar PubMed

46. Freeman SL, Glatzle J, Robin CS, Valdellon M, Sternini C, Sharp JW, Raybould HE. Ligand-induced 5-HT3 receptor internalization in enteric neurons in rat ileum. Gastroenterology 2006;131:97–107.10.1053/j.gastro.2006.04.013Search in Google Scholar PubMed

47. Zhu JX, Zhu XY, Owyang C, Li Y. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol 2001;530:431–42.10.1111/j.1469-7793.2001.0431k.xSearch in Google Scholar PubMed PubMed Central

48. Vincent KM, Sharp JW, Raybould HE. Intestinal glucose-induced calcium-calmodulin kinase signaling in the gut-brain axis in awake rats. Neurogastroenterol Motil 2011;23:e282–93.10.1111/j.1365-2982.2011.01673.xSearch in Google Scholar PubMed PubMed Central

49. El-Ouaghlidi A, Rehring E, Holst JJ, Schweizer A, Foley J, Holmes D, Nauck MA. The dipeptidyl peptidase 4 inhibitor vildagliptin does not accentuate glibenclamide-induced hypoglycemia but reduces glucose-induced glucagon-like peptide 1 and gastric inhibitory polypeptide secretion. J Clin Endocrinol Metab 2007;92:4165–71.10.1210/jc.2006-1932Search in Google Scholar PubMed

50. Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 2007;104:15069–74.10.1073/pnas.0706890104Search in Google Scholar PubMed PubMed Central

51. Gerspach AC, Steinert RE, Schonenberger L, Graber-Maier A, Beglinger C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol Endocrinol Metab 2011;301:E317–25.10.1152/ajpendo.00077.2011Search in Google Scholar

52. Steinert RE, Gerspach AC, Gutmann H, Asarian L, Drewe J, Beglinger C. The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr 2011;30:524–32.10.1016/j.clnu.2011.01.007Search in Google Scholar

53. Mace OJ, Affleck J, Patel N, Kellett GL. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 2007;582:379–92.10.1113/jphysiol.2007.130906Search in Google Scholar

54. Meyer JH, Hlinka M, Khatibi A, Raybould HE, Tso P. Role of small intestine in caloric compensations to oil premeals in rats. Am J Physiol 1998;275:R1320–33.10.1152/ajpregu.1998.275.4.R1320Search in Google Scholar

55. McLaughlin JT, Lomax RB, Hall L, Dockray GJ, Thompson DG, Warhurst G. Fatty acids stimulate cholecystokinin secretion via an acyl chain length-specific, Ca2+-dependent mechanism in the enteroendocrine cell line STC-1. J Physiol 1998;513:11–8.10.1111/j.1469-7793.1998.011by.xSearch in Google Scholar

56. Raybould HE, Meyer JH, Tabrizi Y, Liddle RA, Tso P. Inhibition of gastric emptying in response to intestinal lipid is dependent on chylomicron formation. Am J Physiol 1998;274:R1834–8.10.1152/ajpregu.1998.274.6.R1834Search in Google Scholar

57. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003;278:11303–11.10.1074/jbc.M211495200Search in Google Scholar

58. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312–9.10.1074/jbc.M211609200Search in Google Scholar

59. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005;11:90–4.10.1038/nm1168Search in Google Scholar

60. Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003;303:1047–52.10.1016/S0006-291X(03)00488-1Search in Google Scholar

61. Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, Raybould HE, Wank S. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 2011;140:903–12.10.1053/j.gastro.2010.10.012Search in Google Scholar

62. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008;57:2280–7.10.2337/db08-0307Search in Google Scholar

63. Liou AP, Sei Y, Zhao X, Feng J, Lu X, Thomas C, Pechhold S, Raybould HE, Wank SA. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol 2011;300:G538–46.10.1152/ajpgi.00342.2010Search in Google Scholar

64. Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn-Schmiedeberg’s Arch Pharmacol 2008;377:523–7.10.1007/s00210-007-0200-8Search in Google Scholar

65. Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006;3:167–75.10.1016/j.cmet.2006.02.004Search in Google Scholar

66. Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, Lucman A, Pedraza M, Mondala H, Gao H, Bagnol D, Chen R, Jones RM, Behan DP, Leonard J. A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology 2008;149:2038–47.10.1210/en.2007-0966Search in Google Scholar

67. Lan H, Vassileva G, Corona A, Liu L, Baker H, Golovko A, Abbondanzo SJ, Hu W, Yang S, Ning Y, Del Vecchio RA, Poulet F, Laverty M, Gustafson EL, Hedrick JA, Kowalski TJ. GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J Endocrinol 2009;201:219–30.10.1677/JOE-08-0453Search in Google Scholar

68. Fukuwatari T, Kawada T, Tsuruta M, Hiraoka T, Iwanaga T, Sugimoto E, Fushiki T. Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett 1997;414:461–4.10.1016/S0014-5793(97)01055-7Search in Google Scholar

69. Khan NA, Besnard P. Oro-sensory perception of dietary lipids: new insights into the fat taste transduction. Biochim Biophys Acta 2009;1791:149–55.10.1016/j.bbalip.2009.01.001Search in Google Scholar PubMed

70. Sclafani A, Ackroff K, Abumrad NA. CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr Comp Physiol 2007;293:R1823–32.10.1152/ajpregu.00211.2007Search in Google Scholar PubMed

71. Simons PJ, Boon L. Lingual CD36 and obesity: a matter of fat taste? Acta Histochem 2011;113:765–7; author reply 68–9.10.1016/j.acthis.2010.10.004Search in Google Scholar PubMed

72. Martin C, Chevrot M, Poirier H, Passilly-Degrace P, Niot I, Besnard P. CD36 as a lipid sensor. Physiol Behav 2011;105:36–42.10.1016/j.physbeh.2011.02.029Search in Google Scholar PubMed

73. Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 2008;8:281–8.10.1016/j.cmet.2008.08.005Search in Google Scholar PubMed PubMed Central

74. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 2003;425:90–3.10.1038/nature01921Search in Google Scholar PubMed

75. Nemoz-Gaillard E, Bernard C, Abello J, Cordier-Bussat M, Chayvialle JA, Cuber JC. Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells. Endocrinology 1998;139:932–8.10.1210/endo.139.3.5802Search in Google Scholar PubMed

76. Choi S, Lee M, Shiu AL, Yo SJ, Hallden G, Aponte GW. GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am J Physiol Gastrointest Liver Physiol 2007;292:G1366–75.10.1152/ajpgi.00516.2006Search in Google Scholar PubMed

77. Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, Leeb-Lundberg LM, Olde B. Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther 2006;318:619–28.10.1124/jpet.105.098848Search in Google Scholar PubMed

78. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 2006;281:23589–97.10.1074/jbc.M603670200Search in Google Scholar PubMed

79. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid taste receptor. Nature 2002;416:199–202.10.1038/nature726Search in Google Scholar PubMed

80. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 2002;99:4692–6.10.1073/pnas.072090199Search in Google Scholar PubMed PubMed Central

81. Bezencon C, le Coutre J, Damak S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Sens 2007;32:41–9.10.1093/chemse/bjl034Search in Google Scholar

82. Rey O, Young SH, Jacamo R, Moyer MP, Rozengurt E. Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition. J Cell Physiol 2010;225:73–83.10.1002/jcp.22198Search in Google Scholar

83. Wang Y, Chandra R, Samsa LA, Gooch B, Fee BE, Cook JM, Vigna SR, Grant AO, Liddle RA. Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am J Physiol Gastrointest Liver Physiol 2011;300:G528–37.10.1152/ajpgi.00387.2010Search in Google Scholar

84. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973;84:488–95.10.1037/h0034870Search in Google Scholar

85. Lieverse RJ, van Seters AP, Jansen JB, Lamers CB. Relationship between hunger and plasma cholecystokinin during weight reduction with a very low calorie diet. Int J Obes Relat Metab Disord 1993;17:177–9.Search in Google Scholar

86. Reidelberger RD, Solomon TE. Comparative effects of CCK-8 on feeding, sham feeding, and exocrine pancreatic secretion in rats. Am J Physiol 1986;251:R97–105.10.1152/ajpregu.1986.251.1.R97Search in Google Scholar

87. Reidelberger RD, Varga G, Liehr RM, Castellanos DA, Rosenquist GL, Wong HC, Walsh JH. Cholecystokinin suppresses food intake by a nonendocrine mechanism in rats. Am J Physiol 1994;267:R901–8.10.1152/ajpregu.1994.267.4.R901Search in Google Scholar

88. Greenberg D, Smith GP, Gibbs J. Infusion of CCK-8 into hepatic-portal vein fails to reduce food intake in rats. Am J Physiol 1987;252:R1015–8.10.1152/ajpregu.1987.252.5.R1015Search in Google Scholar

89. Strubbe JH, Wolsink JG, Schutte AM, Balkan B, Prins AJ. Hepatic-portal and cardiac infusion of CCK-8 and glucagon induce different effects on feeding. Physiol Behav 1989;46:643–6.10.1016/0031-9384(89)90345-4Search in Google Scholar

90. Greenberg D, Smith GP. Hepatic-portal infusion reduces the satiating potency of CCK-8. Physiol Behav 1988;44:535–8.10.1016/0031-9384(88)90315-0Search in Google Scholar

91. Cox JE, Kelm GR, Meller ST, Randich A. Suppression of food intake by GI fatty acid infusions: roles of celiac vagal afferents and cholecystokinin. Physiol Behav 2004;82:27–33.10.1016/j.physbeh.2004.04.022Search in Google Scholar PubMed

92. Kissileff HR, Thornton JC, Torres MI, Pavlovich K, Mayer LS, Kalari V, Leibel RL, Rosenbaum M. Leptin reverses declines in satiation in weight-reduced obese humans. Am J Clin Nutr 2012;95:309–17.10.3945/ajcn.111.012385Search in Google Scholar

93. Ballinger AB, Clark ML. L-phenylalanine releases cholecystokinin (CCK) and is associated with reduced food intake in humans: evidence for a physiological role of CCK in control of eating. Metab Clin Exp 1994;43:735–8.10.1016/0026-0495(94)90123-6Search in Google Scholar

94. Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N, D’Amato M, Rovati L, Beglinger C. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut 2000;46:688–93.10.1136/gut.46.5.689Search in Google Scholar

95. Beglinger C, Degen L, Matzinger D, D’Amato M, Drewe J. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol 2001;280:R1149–54.10.1152/ajpregu.2001.280.4.R1149Search in Google Scholar

96. Melville LD, Smith GP, Gibbs J. Devazepide antagonizes the inhibitory effect of cholecystokinin on intake in sham-feeding rats. Pharmacol Biochem Behav 1992;43:975–7.10.1016/0091-3057(92)90435-ISearch in Google Scholar

97. Reidelberger RD, O’Rourke MF. Potent cholecystokinin antagonist L 364718 stimulates food intake in rats. Am J Physiol 1989;257:R1512–8.10.1152/ajpregu.1989.257.6.R1512Search in Google Scholar

98. Reidelberger RD, Varga G, Solomon TE. Effects of selective cholecystokinin antagonists L364,718 and L365,260 on food intake in rats. Peptides 1991;12:1215–21.10.1016/0196-9781(91)90197-WSearch in Google Scholar

99. Dourish CT, Ruckert AC, Tattersall FD, Iversen SD. Evidence that decreased feeding induced by systemic injection of cholecystokinin is mediated by CCK-A receptors. Eur J Pharmacol 1989;173:233–4.10.1016/0014-2999(89)90528-1Search in Google Scholar

100. Moran TH, Ameglio PJ, Schwartz GJ, McHugh PR. Blockade of type A, not type B, CCK receptors attenuates satiety actions of exogenous and endogenous CCK. Am J Physiol 1992;262: R46–50.10.1152/ajpregu.1992.262.1.R46Search in Google Scholar PubMed

101. Funakoshi A, Miyasaka K, Shinozaki H, Masuda M, Kawanami T, Takata Y, Kono A. An animal model of congenital defect of gene expression of cholecystokinin (CCK)-A receptor. Biochem Biophys Res Commun 1995;210:787–96.10.1006/bbrc.1995.1728Search in Google Scholar PubMed

102. Takiguchi S, Takata Y, Funakoshi A, Miyasaka K, Kataoka K, Fujimura Y, Goto T, Kono A. Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Gene 1997;197:169–75.10.1016/S0378-1119(97)00259-XSearch in Google Scholar

103. Moran TH, Katz LF, Plata-Salaman CR, Schwartz GJ. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol 1998;274:R618–25.10.1152/ajpregu.1998.274.3.R618Search in Google Scholar

104. Schwartz GJ, Whitney A, Skoglund C, Castonguay TW, Moran TH. Decreased responsiveness to dietary fat in Otsuka Long-Evans Tokushima fatty rats lacking CCK-A receptors. Am J Physiol 1999;277:R1144–51.10.1152/ajpregu.1999.277.4.R1144Search in Google Scholar

105. Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors. Peptides 2001;22:1339–48.10.1016/S0196-9781(01)00461-2Search in Google Scholar

106. Antin J, Gibbs J, Smith GP. Cholecystokinin interacts with pregastric food stimulation to elicit satiety in the rat. Physiol Behav 1978;20:67–70.10.1016/0031-9384(78)90204-4Search in Google Scholar

107. Schwartz GJ, McHugh PR, Moran TH. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. Am J Physiol 1993;265:R872–6.10.1152/ajpregu.1993.265.4.R872Search in Google Scholar PubMed

108. Peters JH, Ritter RC, Simasko SM. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Am J Physiol Regul Integr Comp Physiol 2006;290:R1544–9.10.1152/ajpregu.00811.2005Search in Google Scholar PubMed

109. Hayes MR, Covasa M. CCK and 5-HT act synergistically to suppress food intake through simultaneous activation of CCK-1 and 5-HT3 receptors. Peptides 2005;26:2322–30.10.1016/j.peptides.2005.03.045Search in Google Scholar PubMed

110. Savastano DM, Covasa M. Intestinal nutrients elicit satiation through concomitant activation of CCK(1) and 5-HT(3) receptors. Physiol Behav 2007;92:434–42.10.1016/j.physbeh.2007.04.017Search in Google Scholar PubMed

111. Lo CM, Zhang DM, Pearson K, Ma L, Sun W, Sakai RR, Davidson WS, Liu M, Raybould HE, Woods SC, Tso P. Interaction of apolipoprotein AIV with cholecystokinin on the control of food intake. Am J Physiol Regul Integr Comp Physiol 2007;293:R1490–4.10.1152/ajpregu.00329.2007Search in Google Scholar PubMed

112. Le Sauter J, Geary N. Pancreatic glucagon and cholecystokinin synergistically inhibit sham feeding in rats. Am J Physiol 1987;253:R719–25.10.1152/ajpregu.1987.253.5.R719Search in Google Scholar

113. Mollet A, Meier S, Grabler V, Gilg S, Scharrer E, Lutz TA. Endogenous amylin contributes to the anorectic effects of cholecystokinin and bombesin. Peptides 2003;24:91–8.10.1016/S0196-9781(02)00280-2Search in Google Scholar

114. de Lartigue G, Dimaline R, Varro A, Dockray GJ. Cocaine- and amphetamine-regulated transcript: stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin. J Neurosci 2007;27:2876–82.10.1523/JNEUROSCI.5508-06.2007Search in Google Scholar PubMed PubMed Central

115. Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ. Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB-1 and MCH receptor abundance. Am J Physiol Gastrointest Liver Physiol 2006;290:G1289–97.10.1152/ajpgi.00543.2005Search in Google Scholar PubMed

116. Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 1999;140:1687–94.10.1210/endo.140.4.6643Search in Google Scholar PubMed

117. Anini Y, Brubaker PL. Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology 2003;144:3244–50.10.1210/en.2003-0143Search in Google Scholar PubMed

118. Ruttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 2009;150:1174–81.10.1210/en.2008-1221Search in Google Scholar PubMed PubMed Central

119. Ruttimann EB, Arnold M, Geary N, Langhans W. GLP-1 antagonism with exendin (9–39) fails to increase spontaneous meal size in rats. Physiol Behav 2010;100:291–6.10.1016/j.physbeh.2010.02.022Search in Google Scholar PubMed

120. Chelikani PK, Haver AC, Reidelberger RD. Intravenous infusion of glucagon-like peptide-1 potently inhibits food intake, sham feeding, and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 2005;288:R1695–706.10.1152/ajpregu.00870.2004Search in Google Scholar PubMed

121. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 2002;418:650–4.10.1038/nature00887Search in Google Scholar PubMed

122. Beglinger C, Degen L. Gastrointestinal satiety signals in humans – physiologic roles for GLP-1 and PYY? Physiol Behav 2006;89:460–4.10.1016/j.physbeh.2006.05.048Search in Google Scholar PubMed

123. Degen L, Oesch S, Casanova M, Graf S, Ketterer S, Drewe J, Beglinger C. Effect of peptide YY3–36 on food intake in humans. Gastroenterology 2005;129:1430–6.10.1053/j.gastro.2005.09.001Search in Google Scholar PubMed

124. Stadlbauer U, Arnold M, Weber E, Langhans W. Possible mechanisms of circulating PYY-induced satiation in male rats. Endocrinology 2013;154:193–204.10.1210/en.2012-1956Search in Google Scholar PubMed

125. Abbott CR, Small CJ, Kennedy AR, Neary NM, Sajedi A, Ghatei MA, Bloom SR. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res 2005;1043:139–44.10.1016/j.brainres.2005.02.065Search in Google Scholar PubMed

126. Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M. The role of the vagal nerve in peripheral PYY3–36-induced feeding reduction in rats. Endocrinology 2005;146:2369–75.10.1210/en.2004-1266Search in Google Scholar PubMed

127. Blouet C, Schwartz GJ. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab 2012;16:579–87.10.1016/j.cmet.2012.10.003Search in Google Scholar PubMed PubMed Central

128. Mayer J. Glucostatic mechanism of regulation of food intake. The New Engl J Med 1953;249:13–6.10.1056/NEJM195307022490104Search in Google Scholar PubMed

129. Anand BK, Chhina GS, Sharma KN, Dua S, Singh B. Activity of single neurons in the hypothalamic feeding centers: effect of glucose. Am J Physiol 1964;207:1146–54.10.1152/ajplegacy.1964.207.5.1146Search in Google Scholar PubMed

130. Oomura Y, Kimura K, Ooyama H, Maeno T, Iki M, Kuniyoshi M. Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats. Science 1964;143:484–5.10.1126/science.143.3605.484Search in Google Scholar PubMed

131. Oomura Y, Ooyama H, Sugimori M, Nakamura T, Yamada Y. Glucose inhibition of the glucose-sensitive neurone in the rat lateral hypothalamus. Nature 1974;247:284–6.10.1038/247284a0Search in Google Scholar PubMed

132. Rowe IC, Boden PR, Ashford ML. Potassium channel dysfunction in hypothalamic glucose-receptive neurones of obese Zucker rats. J Physiol 1996;497:365–77.10.1113/jphysiol.1996.sp021774Search in Google Scholar PubMed PubMed Central

133. Song Z, Levin BE, McArdle JJ, Bakhos N, Routh VH. Convergence of pre- and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 2001;50:2673–81.10.2337/diabetes.50.12.2673Search in Google Scholar PubMed

134. Ashford ML, Boden PR, Treherne JM. Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch 1990; 415:479–83.10.1007/BF00373626Search in Google Scholar PubMed

135. Dunn-Meynell AA, Sanders NM, Compton D, Becker TC, Eiki J, Zhang BB, Levin BE. Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding. J Neurosci 2009;29:7015–22.10.1523/JNEUROSCI.0334-09.2009Search in Google Scholar PubMed PubMed Central

136. Kang L, Dunn-Meynell AA, Routh VH, Gaspers LD, Nagata Y, Nishimura T, Eiki J, Zhang BB, Levin BE. Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes 2006;55:412–20.10.2337/diabetes.55.02.06.db05-1229Search in Google Scholar PubMed

137. Kang L, Routh VH, Kuzhikandathil EV, Gaspers LD, Levin BE. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 2004;53:549–59.10.2337/diabetes.53.3.549Search in Google Scholar PubMed

138. Gonzalez JA, Jensen LT, Fugger L, Burdakov D. Metabolism-independent sugar sensing in central orexin neurons. Diabetes 2008;57:2569–76.10.2337/db08-0548Search in Google Scholar PubMed PubMed Central

139. MacDonald PE, Eliasson L, Rorsman P. Calcium increases endocytotic vesicle size and accelerates membrane fission in insulin-secreting INS-1 cells. J Cell Sci 2005;118:5911–20.10.1242/jcs.02685Search in Google Scholar PubMed

140. Wang R, Liu X, Hentges ST, Dunn-Meynell AA, Levin BE, Wang W, Routh VH. The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 2004;53:1959–65.10.2337/diabetes.53.8.1959Search in Google Scholar PubMed

141. Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 2007;117:2325–36.10.1172/JCI31516Search in Google Scholar PubMed PubMed Central

142. Cotero VE, Routh VH. Insulin blunts the response of glucose-excited neurons in the ventrolateral-ventromedial hypothalamic nucleus to decreased glucose. Am J Physiol Endocrinol Metab 2009;296:E1101–9.10.1152/ajpendo.90932.2008Search in Google Scholar

143. Ibrahim N, Bosch MA, Smart JL, Qiu J, Rubinstein M, Ronnekleiv OK, Low MJ, Kelly MJ. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology 2003;144:1331–40.10.1210/en.2002-221033Search in Google Scholar

144. Plum L, Ma X, Hampel B, Balthasar N, Coppari R, Munzberg H, Shanabrough M, Burdakov D, Rother E, Janoschek R, Alber J, Belgardt BF, Koch L, Seibler J, Schwenk F, Fekete C, Suzuki A, Mak TW, Krone W, Horvath TL, Ashcroft FM, Bruning JC. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest 2006;116:1886–901.10.1172/JCI27123Search in Google Scholar

145. Fioramonti X, Contie S, Song Z, Routh VH, Lorsignol A, Penicaud L. Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes 2007;56:1219–27.10.2337/db06-0567Search in Google Scholar

146. Dunn-Meynell AA, Routh VH, Kang L, Gaspers L, Levin BE. Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes 2002;51:2056–65.10.2337/diabetes.51.7.2056Search in Google Scholar

147. Murphy BA, Fakira KA, Song Z, Beuve A, Routh VH. AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am J physiol-Cell Phy 2009;297:C750–8.10.1152/ajpcell.00127.2009Search in Google Scholar

148. Canabal DD, Song Z, Potian JG, Beuve A, McArdle JJ, Routh VH. Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2007;292:R1418–28.10.1152/ajpregu.00216.2006Search in Google Scholar

149. Campfield LA, Smith FJ. Transient declines in blood glucose signal meal initiation. Int J Obes 1990;14:15–31; discussion 31–4.Search in Google Scholar

150. Langhans W, Grossmann F, Geary N. Intrameal hepatic-portal infusion of glucose reduces spontaneous meal size in rats. Physiol Behav 2001;73:499–507.10.1016/S0031-9384(01)00479-6Search in Google Scholar

151. Tordoff MG, Friedman MI. Hepatic portal glucose infusions decrease food intake and increase food preference. Am J Physiol 1986;251:R192–6.10.1152/ajpregu.1986.251.1.R192Search in Google Scholar

152. Oomura Y, Nakamura T, Sugimori M, Yamada Y. Effect of free fatty acid on the rat lateral hypothalamic neurons. Physiol Behav 1975;14:483–6.10.1016/0031-9384(75)90015-3Search in Google Scholar

153. Wang R, Cruciani-Guglielmacci C, Migrenne S, Magnan C, Cotero VE, Routh VH. Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J Neurophysiol 2006;95:1491–8.10.1152/jn.00697.2005Search in Google Scholar

154. Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 2009;297:R655–64.10.1152/ajpregu.00223.2009Search in Google Scholar

155. Moulle VS, Le Foll C, Philippe E, Kassis N, Rouch C, Marsollier N, Bui LC, Guissard C, Dairou J, Lorsignol A, Penicaud L, Levin BE, Cruciani-Guglielmacci C, Magnan C. Fatty acid transporter CD36 mediates hypothalamic effect of fatty acids on food intake in rats. PloS One 2013;8:e74021.10.1371/journal.pone.0074021Search in Google Scholar

156. Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000;288:2379–81.10.1126/science.288.5475.2379Search in Google Scholar

157. Shu IW, Lindenberg DL, Mizuno TM, Roberts JL, Mobbs CV. The fatty acid synthase inhibitor cerulenin and feeding, like leptin, activate hypothalamic pro-opiomelanocortin (POMC) neurons. Brain Res 2003;985:1–12.10.1016/S0006-8993(03)02806-3Search in Google Scholar

158. Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J, Kuhajda FP, Moran TH, Ronnett GV. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 2004;279:19970–6.10.1074/jbc.M402165200Search in Google Scholar PubMed

159. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002;51:271–5.10.2337/diabetes.51.2.271Search in Google Scholar PubMed

160. Obici S, Rossetti L. Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 2003;144:5172–8.10.1210/en.2003-0999Search in Google Scholar PubMed

161. Morgan BP, Griffiths M, Khanom H, Taylor SM, Neal JW. Blockade of the C5a receptor fails to protect against experimental autoimmune encephalomyelitis in rats. Clin Exp Immunol 2004;138:430–8.10.1111/j.1365-2249.2004.02646.xSearch in Google Scholar PubMed PubMed Central

162. Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol, Diabetes, and Obesity 2011;18:139–43.10.1097/MED.0b013e3283444b09Search in Google Scholar PubMed PubMed Central

163. Auestad N, Korsak RA, Morrow JW, Edmond J. Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 1991;56:1376–86.10.1111/j.1471-4159.1991.tb11435.xSearch in Google Scholar

164. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr. Brain metabolism during fasting. J Clin Invest 1967;46:1589–95.10.1172/JCI105650Search in Google Scholar

165. Guzman M, Blazquez C. Is there an astrocyte-neuron ketone body shuttle? Trends Endocrinol Metab 2001;12:169–73.10.1016/S1043-2760(00)00370-2Search in Google Scholar

166. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ. Hypothalamic mTOR signaling regulates food intake. Science 2006;312:927–30.10.1126/science.1124147Search in Google Scholar PubMed

167. Cota D, Matter EK, Woods SC, Seeley RJ. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci 2008;28:7202–8.10.1523/JNEUROSCI.1389-08.2008Search in Google Scholar PubMed PubMed Central

168. Blouet C, Ono H, Schwartz GJ. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab 2008;8:459–67.10.1016/j.cmet.2008.10.004Search in Google Scholar PubMed PubMed Central

169. Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 2009;29:8302–11.10.1523/JNEUROSCI.1668-09.2009Search in Google Scholar PubMed PubMed Central

170. Bagdade JD, Bierman EL, Porte D Jr. The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. J Clin Invest 1967;46:1549–57.10.1172/JCI105646Search in Google Scholar PubMed PubMed Central

171. Bernstein IL, Lotter EC, Kulkosky PJ, Porte D Jr, Woods SC. Effect of force-feeding upon basal insulin levels of rats. Proc Soc Exp Biol Med 1975;150:546–8.10.3181/00379727-150-39075Search in Google Scholar PubMed

172. Woods SC, Decke E, Vasselli JR. Metabolic hormones and regulation of body weight. Psychol Rev 1974;81:26–43.10.1037/h0035927Search in Google Scholar PubMed

173. Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 1988;81:442–8.10.1172/JCI113339Search in Google Scholar

174. Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979;282:503–5.10.1038/282503a0Search in Google Scholar

175. Riedy CA, Chavez M, Figlewicz DP, Woods SC. Central insulin enhances sensitivity to cholecystokinin. Physiol Behav 1995;58:755–60.10.1016/0031-9384(95)00108-USearch in Google Scholar

176. Lotter EC, Woods SC. Injections of insulin and changes of body weight. Physiol Behav 1977;18:293–7.10.1016/0031-9384(77)90136-6Search in Google Scholar

177. Chavez M, Seeley RJ, Woods SC. A comparison between effects of intraventricular insulin and intraperitoneal lithium chloride on three measures sensitive to emetic agents. Behav Neurosci 1995;109:547–50.10.1037/0735-7044.109.3.547Search in Google Scholar

178. Woods SC. From conditioned hypoglycemia to obesity: following the data. Physiol Behav 2013;121:19–24.10.1016/j.physbeh.2013.01.010Search in Google Scholar

179. Geary N. Endocrine controls of eating: CCK, leptin, and ghrelin. Physiol Behav 2004;81:719–33.10.1016/j.physbeh.2004.04.013Search in Google Scholar

180. Strubbe JH, Mein CG. Increased feeding in response to bilateral injection of insulin antibodies in the VMH. Physiol Behav 1977;19:309–13.10.1016/0031-9384(77)90343-2Search in Google Scholar

181. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science 2000;289:2122–5.10.1126/science.289.5487.2122Search in Google Scholar PubMed

182. Gloy VL, Lutz TA, Langhans W, Geary N, Hillebrand JJ. Basal plasma levels of insulin, leptin, ghrelin, and amylin do not signal adiposity in rats recovering from forced overweight. Endocrinology 2010;151:4280–8.10.1210/en.2010-0439Search in Google Scholar PubMed

183. Hillebrand JJ, Geary N. Do leptin and insulin signal adiposity? Forum Nutr 2010;63:111–22.10.1159/000264399Search in Google Scholar

184. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–32.10.1038/372425a0Search in Google Scholar

185. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996;271:994–6.10.1126/science.271.5251.994Search in Google Scholar

186. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides 1996;17:305–11.10.1016/0196-9781(96)00025-3Search in Google Scholar

187. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 1997;138:4489–92.10.1210/endo.138.10.5570Search in Google Scholar PubMed

188. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001;411:480–4.10.1038/35078085Search in Google Scholar PubMed

189. Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C, Enriori P, Hampel B, Barsh GS, Kahn CR, Cowley MA, Ashcroft FM, Bruning JC. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 2007;5:438–49.10.1016/j.cmet.2007.05.004Search in Google Scholar PubMed

190. Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 2002;143:239–46.10.1210/endo.143.1.8589Search in Google Scholar PubMed

191. Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, Marco C, Caro JF. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 1996;97:1344–7.10.1172/JCI118551Search in Google Scholar PubMed PubMed Central

192. Flynn MC, Scott TR, Pritchard TC, Plata-Salaman CR. Mode of action of OB protein (leptin) on feeding. Am J Physiol 1998;275:R174–9.10.1152/ajpregu.1998.275.1.R174Search in Google Scholar PubMed

193. Ho A, Chin A. Circadian feeding and drinking patterns of genetically obese mice fed solid chow diet. Physiol Behav 1988;43:651–6.10.1016/0031-9384(88)90221-1Search in Google Scholar

194. Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 2007;56:1647–54.10.2337/db07-0123Search in Google Scholar PubMed

195. Vaisse C, Halaas JL, Horvath CM, Darnell JE Jr, Stoffel M, Friedman JM. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996;14:95–7.10.1038/ng0996-95Search in Google Scholar PubMed

196. Mesaros A, Koralov SB, Rother E, Wunderlich FT, Ernst MB, Barsh GS, Rajewsky K, Bruning JC. Activation of Stat3 signaling in AgRP neurons promotes locomotor activity. Cell Metab 2008;7:236–48.10.1016/j.cmet.2008.01.007Search in Google Scholar PubMed

197. Ernst MB, Wunderlich CM, Hess S, Paehler M, Mesaros A, Koralov SB, Kleinridders A, Husch A, Munzberg H, Hampel B, Alber J, Kloppenburg P, Bruning JC, Wunderlich FT. Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. J Neurosci 2009;29:11582–93.10.1523/JNEUROSCI.5712-08.2009Search in Google Scholar PubMed PubMed Central

198. Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, Klockener T, Alessi D, Kloppenburg P, Bruning JC. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab 2008;7:291–301.10.1016/j.cmet.2008.01.006Search in Google Scholar PubMed

199. Hill JW, Xu Y, Preitner F, Fukuda M, Cho YR, Luo J, Balthasar N, Coppari R, Cantley LC, Kahn BB, Zhao JJ, Elmquist JK. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology 2009;150:4874–82.10.1210/en.2009-0454Search in Google Scholar PubMed PubMed Central

200. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr, Seeley RJ, Schwartz MW. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 2003;52:227–31.10.2337/diabetes.52.2.227Search in Google Scholar PubMed

201. Ren H, Orozco IJ, Su Y, Suyama S, Gutierrez-Juarez R, Horvath TL, Wardlaw SL, Plum L, Arancio O, Accili D. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 2012;149:1314–26.10.1016/j.cell.2012.04.032Search in Google Scholar PubMed PubMed Central

202. Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim HS, Park JY, Kim YB, Lee KU. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci 2006;9:901–6.10.1038/nn1731Search in Google Scholar PubMed

203. Kitamura T, Feng Y, Kitamura YI, Chua SC Jr, Xu AW, Barsh GS, Rossetti L, Accili D. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 2006;12:534–40.10.1038/nm1392Search in Google Scholar

204. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschop MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 2008;454:846–51.10.1038/nature07181Search in Google Scholar

205. Ono H, Pocai A, Wang Y, Sakoda H, Asano T, Backer JM, Schwartz GJ, Rossetti L. Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J Clin Invest 2008;118:2959–68.10.1172/JCI34277Search in Google Scholar

206. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 2005;493:63–71.10.1002/cne.20786Search in Google Scholar

207. Woods SC. The control of food intake: behavioral versus molecular perspectives. Cell Metab 2009;9:489–98.10.1016/j.cmet.2009.04.007Search in Google Scholar

208. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997;88:131–41.10.1016/S0092-8674(00)81865-6Search in Google Scholar

209. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000;141:3518–21.10.1210/endo.141.9.7791Search in Google Scholar

210. Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG, Marsh DJ, Forrest MJ, Gopal-Truter S, Fisher J, Camacho RE, Strack AM, Mellin TN, MacIntyre DE, Chen HY, Van der Ploeg LH. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res 2000;9:145–54.10.1023/A:1008983615045Search in Google Scholar

211. Kask A, Rago L, Wikberg JE, Schioth HB. Differential effects of melanocortin peptides on ingestive behaviour in rats: evidence against the involvement of MC(3) receptor in the regulation of food intake. Neurosci Lett 2000;283:1–4.10.1016/S0304-3940(00)00837-5Search in Google Scholar

212. Savontaus E, Breen TL, Kim A, Yang LM, Chua SC Jr, Wardlaw SL. Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice. Endocrinology 2004;145:3881–91.10.1210/en.2004-0263Search in Google Scholar PubMed

213. Lee M, Kim A, Chua SC Jr, Obici S, Wardlaw SL. Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. Am J Physiol Endocrinol Metab 2007;293:E121–31.10.1152/ajpendo.00555.2006Search in Google Scholar

214. Li G, Mobbs CV, Scarpace PJ. Central pro-opiomelanocortin gene delivery results in hypophagia, reduced visceral adiposity, and improved insulin sensitivity in genetically obese Zucker rats. Diabetes 2003;52:1951–7.10.2337/diabetes.52.8.1951Search in Google Scholar

215. Zhang Y, Rodrigues E, Gao YX, King M, Cheng KY, Erdos B, Tumer N, Carter C, Scarpace PJ. Pro-opiomelanocortin gene transfer to the nucleus of the solitary track but not arcuate nucleus ameliorates chronic diet-induced obesity. Neuroscience 2010;169:1662–71.10.1016/j.neuroscience.2010.06.001Search in Google Scholar

216. Andino LM, Ryder DJ, Shapiro A, Matheny MK, Zhang Y, Judge MK, Cheng KY, Tumer N, Scarpace PJ. POMC overexpression in the ventral tegmental area ameliorates dietary obesity. J Endocrinol 2011;210:199–207.10.1530/JOE-10-0418Search in Google Scholar

217. Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 2011;14:351–5.10.1038/nn.2739Search in Google Scholar

218. Eerola K, Nordlund W, Virtanen S, Dickens AM, Mattila M, Ruohonen ST, Chua SC Jr, Wardlaw SL, Savontaus M, Savontaus E. Lentivirus mediated alpha-melanocyte stimulating hormone overexpression in the hypothalamus decreases diet induced obesity in mice. J Neuroendocrinol Epub 2013 Sep 30. doi:10.1111/jne.12109.10.1111/jne.12109Search in Google Scholar

219. Bronstein DM, Schafer MK, Watson SJ, Akil H. Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res 1992;587:269–75.10.1016/0006-8993(92)91007-2Search in Google Scholar

220. Padilla SL, Reef D, Zeltser LM. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations. Endocrinology 2012;153:1219–31.10.1210/en.2011-1665Search in Google Scholar PubMed PubMed Central

221. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin DG, Schwartz MW. Melanocortin receptors in leptin effects. Nature 1997;390:349.10.1038/37016Search in Google Scholar PubMed

222. Grill HJ, Ginsberg AB, Seeley RJ, Kaplan JM. Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J Neurosci 1998;18:10128–35.10.1523/JNEUROSCI.18-23-10128.1998Search in Google Scholar

223. Williams DL, Kaplan JM, Grill HJ. The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology 2000;141:1332–7.10.1210/endo.141.4.7410Search in Google Scholar

224. Williams DL, Grill HJ, Weiss SM, Baird JP, Kaplan JM. Behavioral processes underlying the intake suppressive effects of melanocortin 3/4 receptor activation in the rat. Psychopharmacology 2002;161:47–53.10.1007/s00213-002-1022-5Search in Google Scholar

225. Zheng H, Patterson LM, Phifer CB, Berthoud HR. Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol Regul Integr Comp Physiol 2005;289:R247–58.10.1152/ajpregu.00869.2004Search in Google Scholar

226. Zhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci 2013;33:3624–32.10.1523/JNEUROSCI.2742-12.2013Search in Google Scholar

227. Zheng H, Patterson LM, Rhodes CJ, Louis GW, Skibicka KP, Grill HJ, Myers MG Jr, Berthoud HR. A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. Am J Physiol Regul Integr Comp Physiol 2010;298:R720–8.10.1152/ajpregu.00619.2009Search in Google Scholar

228. Williams KW, Margatho LO, Lee CE, Choi M, Lee S, Scott MM, Elias CF, Elmquist JK. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci 2010;30:2472–9.10.1523/JNEUROSCI.3118-09.2010Search in Google Scholar

229. Sohn JW, Xu Y, Jones JE, Wickman K, Williams KW, Elmquist JK. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 2011;71:488–97.10.1016/j.neuron.2011.06.012Search in Google Scholar

230. Al-Qassab H, Smith MA, Irvine EE, Guillermet-Guibert J, Claret M, Choudhury AI, Selman C, Piipari K, Clements M, Lingard S, Chandarana K, Bell JD, Barsh GS, Smith AJ, Batterham RL, Ashford ML, Vanhaesebroeck B, Withers DJ. Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab 2009;10:343–54.10.1016/j.cmet.2009.09.008Search in Google Scholar

231. O’Donohue TL, Dorsa DM. The opiomelanotropinergic neuronal and endocrine systems. Peptides 1982;3:353–95.10.1016/0196-9781(82)90098-5Search in Google Scholar

232. Bunel DT, Delbende C, Blasquez C, Jegou S, Vaudry H. Effects of ions and ionic channel activators or blockers on release of alpha-MSH from perifused rat hypothalamic slices. Brain Res Mol Brain Res 1990;8:167–75.10.1016/0169-328X(90)90061-HSearch in Google Scholar

233. MacMillan SJ, Mark MA, Duggan AW. The release of beta-endorphin and the neuropeptide-receptor mismatch in the brain. Brain Res 1998;794:127–36.10.1016/S0006-8993(98)00223-6Search in Google Scholar

234. Leranth C, Williams TH, Chretien M, Palkovits M. Ultrastructural investigation of ACTH immunoreactivity in arcuate and supraoptic nuclei of the rat. Cell Tissue Res 1980;210:11–9.10.1007/BF00232137Search in Google Scholar

235. Buma P, Nieuwenhuys R. Ultrastructural characterization of exocytotic release sites in different layers of the median eminence of the rat. Cell Tissue Res 1988;252:107–14.10.1007/BF00213831Search in Google Scholar

236. Buma P, Veening J, Nieuwenhuys R. Ultrastructural characterization of adrenocorticotrope hormone (ACTH) immunoreactive fibres in the mesencephalic central grey substance of the rat. Eur J Neurosci 1989;1:659–72.10.1111/j.1460-9568.1989.tb00372.xSearch in Google Scholar

237. Golding DW. A pattern confirmed and refined – synaptic, nonsynaptic and parasynaptic exocytosis. BioEssays 1994;16:503–8.10.1002/bies.950160710Search in Google Scholar

238. Agnati LF, Zoli M, Stromberg I, Fuxe K. Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 1995;69:711–26.10.1016/0306-4522(95)00308-6Search in Google Scholar

239. Kaye WH, Berrettini WH, Gwirtsman HE, Chretien M, Gold PW, George DT, Jimerson DC, Ebert MH. Reduced cerebrospinal fluid levels of immunoreactive pro-opiomelanocortin related peptides (including beta-endorphin) in anorexia nervosa. Life Sci 1987;41:2147–55.10.1016/0024-3205(87)90533-9Search in Google Scholar

240. Tsigos C, Crosby SR, Gibson S, Young RJ, White A. Proopiomelanocortin is the predominant adrenocorticotropin-related peptide in human cerebrospinal fluid. J Clin Endocrinol Metab 1993;76:620–4.Search in Google Scholar

241. Veening JG, Gerrits PO, Barendregt HP. Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS 2012;9:16.10.1186/2045-8118-9-16Search in Google Scholar

242. Murphy B, Nunes CN, Ronan JJ, Harper CM, Beall MJ, Hanaway M, Fairhurst AM, Van der Ploeg LH, MacIntyre DE, Mellin TN. Melanocortin mediated inhibition of feeding behavior in rats. Neuropeptides 1998;32:491–7.10.1016/S0143-4179(98)90077-4Search in Google Scholar

243. Murphy B, Nunes CN, Ronan JJ, Hanaway M, Fairhurst AM, Mellin TN. Centrally administered MTII affects feeding, drinking, temperature, and activity in the Sprague-Dawley rat. J Appl Physiol 2000;89:273–82.10.1152/jappl.2000.89.1.273Search in Google Scholar PubMed

244. Irani BG, Xiang Z, Yarandi HN, Holder JR, Moore MC, Bauzo RM, Proneth B, Shaw AM, Millard WJ, Chambers JB, Benoit SC, Clegg DJ, Haskell-Luevano C. Implication of the melanocortin-3 receptor in the regulation of food intake. Eur J Pharmacol 2011;660:80–7.10.1016/j.ejphar.2010.10.101Search in Google Scholar

245. Azzara AV, Sokolnicki JP, Schwartz GJ. Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition. Physiol Behav 2002;77:411–6.10.1016/S0031-9384(02)00883-1Search in Google Scholar

246. Kim MS, Small CJ, Stanley SA, Morgan DG, Seal LJ, Kong WM, Edwards CM, Abusnana S, Sunter D, Ghatei MA, Bloom SR. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J Clin Invest 2000;105:1005–11.10.1172/JCI8857Search in Google Scholar

247. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 1999;23:775–86.10.1016/S0896-6273(01)80035-0Search in Google Scholar

248. Korner J, Savontaus E, Chua SC Jr, Leibel RL, Wardlaw SL. Leptin regulation of Agrp and Npy mRNA in the rat hypothalamus. J Neuroendocrinol 2001;13:959–66.10.1046/j.1365-2826.2001.00716.xSearch in Google Scholar PubMed

249. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC Jr, Elmquist JK, Lowell BB. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004;42:983–91.10.1016/j.neuron.2004.06.004Search in Google Scholar PubMed

250. Skibicka KP, Grill HJ. Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors. Endocrinology 2009;150:1705–11.10.1210/en.2008-1316Search in Google Scholar PubMed PubMed Central

251. Williams DL, Bowers RR, Bartness TJ, Kaplan JM, Grill HJ. Brainstem melanocortin 3/4 receptor stimulation increases uncoupling protein gene expression in brown fat. Endocrinology 2003;144:4692–7.10.1210/en.2003-0440Search in Google Scholar PubMed

252. Ellacott KL, Halatchev IG, Cone RD. Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology 2006;147:3190–5.10.1210/en.2005-0877Search in Google Scholar PubMed

253. Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Seeley RJ, Woods SC. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 2002;22:9048–52.10.1523/JNEUROSCI.22-20-09048.2002Search in Google Scholar

254. Kim EM, Grace MK, Welch CC, Billington CJ, Levine AS. STZ-induced diabetes decreases and insulin normalizes POMC mRNA in arcuate nucleus and pituitary in rats. Am J Physiol 1999;276:R1320–6.10.1152/ajpregu.1999.276.5.R1320Search in Google Scholar

255. Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, Cho YR, Chuang JC, Xu Y, Choi M, Lauzon D, Lee CE, Coppari R, Richardson JA, Zigman JM, Chua S, Scherer PE, Lowell BB, Bruning JC, Elmquist JK. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab 2010;11:286–97.10.1016/j.cmet.2010.03.002Search in Google Scholar

256. Lin HV, Plum L, Ono H, Gutierrez-Juarez R, Shanabrough M, Borok E, Horvath TL, Rossetti L, Accili D. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC neurons. Diabetes 2010;59:337–46.10.2337/db09-1303Search in Google Scholar

257. Heisler LK, Cowley MA, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB, Marcus JN, Holstege H, Lee CE, Cone RD, Elmquist JK. Activation of central melanocortin pathways by fenfluramine. Science 2002;297:609–11.10.1126/science.1072327Search in Google Scholar

258. Kiss J, Leranth C, Halasz B. Serotoninergic endings on VIP-neurons in the suprachiasmatic nucleus and on ACTH-neurons in the arcuate nucleus of the rat hypothalamus. A combination of high resolution autoradiography and electron microscopic immunocytochemistry. Neurosci Lett 1984;44:119–24.10.1016/0304-3940(84)90068-5Search in Google Scholar

259. Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, Oksanen LJ, Thornton-Jones ZD, Clifton PG, Yueh CY, Evans ML, McCrimmon RJ, Elmquist JK, Butler AA, Heisler LK. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab 2007;6:398–405.10.1016/j.cmet.2007.10.008Search in Google Scholar PubMed PubMed Central

260. Lam DD, Przydzial MJ, Ridley SH, Yeo GS, Rochford JJ, O’Rahilly S, Heisler LK. Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology 2008; 149:1323–8.10.1210/en.2007-1321Search in Google Scholar PubMed PubMed Central

261. Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, Choi MJ, Anderson JG, Heisler LK, Zigman JM, Lowell BB, Elmquist JK. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 2008;60:582–9.10.1016/j.neuron.2008.09.033Search in Google Scholar PubMed PubMed Central

262. Xu Y, Jones JE, Lauzon DA, Anderson JG, Balthasar N, Heisler LK, Zinn AR, Lowell BB, Elmquist JK. A serotonin and melanocortin circuit mediates D-fenfluramine anorexia. J Neurosci 2010;30:14630–4.10.1523/JNEUROSCI.5412-09.2010Search in Google Scholar PubMed PubMed Central

263. Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z, Liu HY, Zigman JM, Balthasar N, Kishi T, Lee CE, Aschkenasi CJ, Zhang CY, Yu J, Boss O, Mountjoy KG, Clifton PG, Lowell BB, Friedman JM, Horvath T, Butler AA, Elmquist JK, Cowley MA. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 2006;51:239–49.10.1016/j.neuron.2006.06.004Search in Google Scholar PubMed

264. Berglund ED, Liu C, Sohn JW, Liu T, Kim MH, Lee CE, Vianna CR, Williams KW, Xu Y, Elmquist JK. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. J Clin Invest 2013;123:5061–70.10.1172/JCI70338Search in Google Scholar PubMed PubMed Central

265. Berglund ED, Vianna CR, Donato J Jr, Kim MH, Chuang JC, Lee CE, Lauzon DA, Lin P, Brule LJ, Scott MM, Coppari R, Elmquist JK. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J Clin Invest 2012;122:1000–9.10.1172/JCI59816Search in Google Scholar PubMed PubMed Central

266. Hentges ST, Nishiyama M, Overstreet LS, Stenzel-Poore M, Williams JT, Low MJ. GABA release from proopiomelanocortin neurons. J Neurosci 2004;24:1578–83.10.1523/JNEUROSCI.3952-03.2004Search in Google Scholar PubMed PubMed Central

267. Hentges ST, Otero-Corchon V, Pennock RL, King CM, Low MJ. Proopiomelanocortin expression in both GABA and glutamate neurons. J Neurosci 2009;29:13684–90.10.1523/JNEUROSCI.3770-09.2009Search in Google Scholar PubMed PubMed Central

268. Jarvie BC, Hentges ST. Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons. J Comp Neurol 2012;520:3863–76.10.1002/cne.23127Search in Google Scholar PubMed PubMed Central

269. Ito Y, Banno R, Shibata M, Adachi K, Hagimoto S, Hagiwara D, Ozawa Y, Goto M, Suga H, Sugimura Y, Bettler B, Oiso Y, Arima H. GABA type B receptor signaling in proopiomelanocortin neurons protects against obesity, insulin resistance, and hypothalamic inflammation in male mice on a high-fat diet. J Neurosci 2013;33:17166–73.10.1523/JNEUROSCI.0897-13.2013Search in Google Scholar PubMed PubMed Central

270. Palou M, Sanchez J, Rodriguez AM, Priego T, Pico C, Palou A. Induction of NPY/AgRP orexigenic peptide expression in rat hypothalamus is an early event in fasting: relationship with circulating leptin, insulin and glucose. Cell Physiol Biochem 2009;23:115–24.10.1159/000204100Search in Google Scholar PubMed

271. Shutter JR, Graham M, Kinsey AC, Scully S, Luthy R, Stark KL. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev 1997;11:593–602.10.1101/gad.11.5.593Search in Google Scholar PubMed

272. Korner J, Wissig S, Kim A, Conwell IM, Wardlaw SL. Effects of agouti-related protein on metabolism and hypothalamic neuropeptide gene expression. J Neuroendocrinol 2003;15:1116–21.10.1111/j.1365-2826.2003.01113.xSearch in Google Scholar PubMed

273. Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL. Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 1997;17:273–4.10.1038/ng1197-273Search in Google Scholar PubMed

274. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 2011;121:1424–8.10.1172/JCI46229Search in Google Scholar PubMed PubMed Central

275. Makimura H, Mizuno TM, Mastaitis JW, Agami R, Mobbs CV. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci 2002;3:18.10.1186/1471-2202-3-18Search in Google Scholar PubMed PubMed Central

276. van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, Jo YH, MacKenzie RG, Allison DB, Dun NJ, Elmquist J, Lowell BB, Barsh GS, de Luca C, Myers MG Jr, Schwartz GJ, Chua SC Jr. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 2008;149:1773–85.10.1210/en.2007-1132Search in Google Scholar PubMed PubMed Central

277. Bewick GA, Gardiner JV, Dhillo WS, Kent AS, White NE, Webster Z, Ghatei MA, Bloom SR. Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J 2005;19:1680–2.10.1096/fj.04-3434fjeSearch in Google Scholar PubMed

278. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Bruning JC. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 2005;8:1289–91.10.1038/nn1548Search in Google Scholar PubMed

279. Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 2005;310:683–5.10.1126/science.1115524Search in Google Scholar PubMed

280. Xu AW, Kaelin CB, Morton GJ, Ogimoto K, Stanhope K, Graham J, Baskin DG, Havel P, Schwartz MW, Barsh GS. Effects of hypothalamic neurodegeneration on energy balance. PLoS Biol 2005;3:e415.10.1371/journal.pbio.0030415Search in Google Scholar PubMed PubMed Central

281. Michaud EJ, Bultman SJ, Klebig ML, van Vugt MJ, Stubbs LJ, Russell LB, Woychik RP. A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc Natl Acad Sci USA 1994;91:2562–6.10.1073/pnas.91.7.2562Search in Google Scholar PubMed PubMed Central

282. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997;278:135–8.10.1126/science.278.5335.135Search in Google Scholar PubMed

283. Tolle V, Low MJ. In vivo evidence for inverse agonism of agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes 2008;57:86–94.10.2337/db07-0733Search in Google Scholar PubMed

284. Horvath TL, Bechmann I, Naftolin F, Kalra SP, Leranth C. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res 1997;756:283–6.10.1016/S0006-8993(97)00184-4Search in Google Scholar

285. Wu Q, Howell MP, Cowley MA, Palmiter RD. Starvation after AgRP neuron ablation is independent of melanocortin signaling. Proc Natl Acad Sci USA 2008;105:2687–92.10.1073/pnas.0712062105Search in Google Scholar

286. Kaelin CB, Gong L, Xu AW, Yao F, Hockman K, Morton GJ, Schwartz MW, Barsh GS, MacKenzie RG. Signal transducer and activator of transcription (stat) binding sites but not stat3 are required for fasting-induced transcription of agouti-related protein messenger ribonucleic acid. Mol Endocrinol 2006;20:2591–602.10.1210/me.2006-0107Search in Google Scholar

287. Iskandar K, Cao Y, Hayashi Y, Nakata M, Takano E, Yada T, Zhang C, Ogawa W, Oki M, Chua S Jr, Itoh H, Noda T, Kasuga M, Nakae J. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake. Am J Physiol Endocrinol Metab 2010;298:E787–98.10.1152/ajpendo.00512.2009Search in Google Scholar

288. Cao Y, Nakata M, Okamoto S, Takano E, Yada T, Minokoshi Y, Hirata Y, Nakajima K, Iskandar K, Hayashi Y, Ogawa W, Barsh GS, Hosoda H, Kangawa K, Itoh H, Noda T, Kasuga M, Nakae J. PDK1-Foxo1 in agouti-related peptide neurons regulates energy homeostasis by modulating food intake and energy expenditure. PloS One 2011;6:e18324.10.1371/journal.pone.0018324Search in Google Scholar

289. Gray TS, Morley JE. Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. Life Sci 1986;38:389–401.10.1016/0024-3205(86)90061-5Search in Google Scholar

290. Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 1986;7:1189–92.10.1016/0196-9781(86)90149-XSearch in Google Scholar

291. Leibowitz SF, Alexander JT. Analysis of neuropeptide Y-induced feeding: dissociation of Y1 and Y2 receptor effects on natural meal patterns. Peptides 1991;12:1251–60.10.1016/0196-9781(91)90203-2Search in Google Scholar

292 Lynch WC, Hart P, Babcock AM. Neuropeptide Y attenuates satiety: evidence from a detailed analysis of patterns ingestion. Brain Res 1994;636:28–34.10.1016/0006-8993(94)90171-6Search in Google Scholar

293. Stricker-Krongrad A, Barbanel G, Beck B, Burlet A, Nicolas JP, Burlet C. K(+)-stimulated neuropeptide Y release into the paraventricular nucleus and relation to feeding behavior in free-moving rats. Neuropeptides 1993;24:307–12.10.1016/0143-4179(93)90020-BSearch in Google Scholar

294. Corp ES, Melville LD, Greenberg D, Gibbs J, Smith GP. Effect of fourth ventricular neuropeptide Y and peptide YY on ingestive and other behaviors. Am J Physiol 1990;259:R317–23.10.1152/ajpregu.1990.259.2.R317Search in Google Scholar

295. Taylor A, Redworth EW, Morgan JB. Influence of diet on iron, copper, and zinc status in children under 24 months of age. Biol Trace Elem Res 2004;97:197–214.10.1385/BTER:97:3:197Search in Google Scholar

296. Yang L, Scott KA, Hyun J, Tamashiro KL, Tray N, Moran TH, Bi S. Role of dorsomedial hypothalamic neuropeptide Y in modulating food intake and energy balance. J Neurosci 2009;29:179–90.10.1523/JNEUROSCI.4379-08.2009Search in Google Scholar

297. Clark JT, Kalra PS, Crowley WR, Kalra SP. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984;115:427–9.10.1210/endo-115-1-427Search in Google Scholar

298. Levine AS, Morley JE. Neuropeptide Y: a potent inducer of consummatory behavior in rats. Peptides 1984;5:1025–9.10.1016/0196-9781(84)90165-7Search in Google Scholar

299. Stanley BG, Leibowitz SF. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci 1984;35:2635–42.10.1016/0024-3205(84)90032-8Search in Google Scholar

300. Dube MG, Xu B, Crowley WR, Kalra PS, Kalra SP. Evidence that neuropeptide Y is a physiological signal for normal food intake. Brain Res 1994;646:341–4.10.1016/0006-8993(94)90103-1Search in Google Scholar

301. Shibasaki T, Oda T, Imaki T, Ling N, Demura H. Injection of anti-neuropeptide Y gamma-globulin into the hypothalamic paraventricular nucleus decreases food intake in rats. Brain Res 1993;601:313–6.10.1016/0006-8993(93)91727-ASearch in Google Scholar

302. Walter MJ, Scherrer JF, Flood JF, Morley JE. Effects of localized injections of neuropeptide Y antibody on motor activity and other behaviors. Peptides 1994;15:607–13.10.1016/0196-9781(94)90083-3Search in Google Scholar

303. Gardiner JV, Kong WM, Ward H, Murphy KG, Dhillo WS, Bloom SR. AAV mediated expression of anti-sense neuropeptide Y cRNA in the arcuate nucleus of rats results in decreased weight gain and food intake. Biochem Biophys Res Commun 2005;327:1088–93.10.1016/j.bbrc.2004.12.113Search in Google Scholar

304. Hulsey MG, Pless CM, White BD, Martin RJ. ICV administration of anti-NPY antisense oligonucleotide: effects on feeding behavior, body weight, peptide content and peptide release. Regul Pept 1995;59:207–14.10.1016/0167-0115(95)00110-WSearch in Google Scholar

305. Chua SC Jr, Brown AW, Kim J, Hennessey KL, Leibel RL, Hirsch J. Food deprivation and hypothalamic neuropeptide gene expression: effects of strain background and the diabetes mutation. Brain Res Mol Brain Res 1991;11:291–9.10.1016/0169-328X(91)90038-YSearch in Google Scholar

306. Sahu A, Kalra PS, Kalra SP. Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides 1988;9:83–6.10.1016/0196-9781(88)90013-7Search in Google Scholar

307. Sanacora G, Kershaw M, Finkelstein JA, White JD. Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology 1990;127:730–7.10.1210/endo-127-2-730Search in Google Scholar

308. Schwartz GJ, Moran TH. Leptin and neuropeptide Y have opposing modulatory effects on nucleus of the solitary tract neurophysiological responses to gastric loads: implications for the control of food intake. Endocrinology 2002;143:3779–84.10.1210/en.2002-220352Search in Google Scholar

309. Beck B, Jhanwar-Uniyal M, Burlet A, Chapleur-Chateau M, Leibowitz SF, Burlet C. Rapid and localized alterations of neuropeptide Y in discrete hypothalamic nuclei with feeding status. Brain Res 1990;528:245–9.10.1016/0006-8993(90)91664-3Search in Google Scholar

310. Bi S. Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis. Physiol Behav 2013;121:56–60.10.1016/j.physbeh.2013.03.022Search in Google Scholar

311. Elmquist JK, Elias CF, Saper CB. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 1999;22:221–32.10.1016/S0896-6273(00)81084-3Search in Google Scholar

312. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000;404:661–71.10.1038/35007534Search in Google Scholar PubMed

313. Bi S, Robinson BM, Moran TH. Acute food deprivation and chronic food restriction differentially affect hypothalamic NPY mRNA expression. Am J Physiol Regul Integr Comp Physiol 2003;285:R1030–6.10.1152/ajpregu.00734.2002Search in Google Scholar PubMed

314. Chen J, Scott KA, Zhao Z, Moran TH, Bi S. Characterization of the feeding inhibition and neural activation produced by dorsomedial hypothalamic cholecystokinin administration. Neuroscience 2008;152:178–88.10.1016/j.neuroscience.2007.12.004Search in Google Scholar

315. McMinn JE, Sindelar DK, Havel PJ, Schwartz MW. Leptin deficiency induced by fasting impairs the satiety response to cholecystokinin. Endocrinology 2000;141:4442–8.10.1210/endo.141.12.7815Search in Google Scholar

316. Halford JC, Harrold JA, Boyland EJ, Lawton CL, Blundell JE. Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs 2007;67:27–55.10.2165/00003495-200767010-00004Search in Google Scholar

317. Blundell JE. Is there a role for serotonin (5-hydroxytryptamine) in feeding? Int J Obes 1977;1:15–42.Search in Google Scholar

318. Halford JC, Blundell JE. Separate systems for serotonin and leptin in appetite control. Ann Med 2000;32:222–32.10.3109/07853890008998829Search in Google Scholar

319. Heisler LK, Cowley MA, Kishi T, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro J, Zigman JM, Cone RD, Elmquist JK. Central serotonin and melanocortin pathways regulating energy homeostasis. Ann NY Acad Sci 2003;994:169–74.10.1111/j.1749-6632.2003.tb03177.xSearch in Google Scholar

320. Bouwknecht JA, van der Gugten J, Hijzen TH, Maes RA, Hen R, Olivier B. Male and female 5-HT(1B) receptor knockout mice have higher body weights than wildtypes. Physiol Behav 2001;74:507–16.10.1016/S0031-9384(01)00589-3Search in Google Scholar

321. Lee MD, Somerville EM, Kennett GA, Dourish CT, Clifton PG. Reduced hypophagic effects of d-fenfluramine and the 5-HT2C receptor agonist mCPP in 5-HT1B receptor knockout mice. Psychopharmacology 2004;176:39–49.10.1007/s00213-004-1864-0Search in Google Scholar

322. Halford JC, Blundell JE. The 5-HT1B receptor agonist CP-94,253 reduces food intake and preserves the behavioural satiety sequence. Physiol Behav 1996;60:933–9.10.1016/0031-9384(96)00073-XSearch in Google Scholar

323. Lee MD, Simansky KJ. CP-94, 253: a selective serotonin1B (5-HT1B) agonist that promotes satiety. Psychopharmacology 1997;131:264–70.10.1007/s002130050292Search in Google Scholar PubMed

324. Lee MD, Aloyo VJ, Fluharty SJ, Simansky KJ. Infusion of the serotonin1B (5-HT1B) agonist CP-93,129 into the parabrachial nucleus potently and selectively reduces food intake in rats. Psychopharmacology 1998;136:304–7.10.1007/s002130050570Search in Google Scholar PubMed

325. Blundell J, Latham C. Pharmacological manipulation of feeding behaviour: possible influences of serotonin and dopamine on food intake. In: Garattini S, Samanin R, editors. Central mechanism of anorectic drugs. New York: Raven, 1978:83–109.Search in Google Scholar

326. Blundell J, McArthur R. Behavioural flux and feeding: continuous monitoring of food intake and food selection, and the video-recording of appetitive and satiety sequences for the anlysis of drug action. In: Samanin R, Garattini S, editors. Anorectic agents: mechanisms of action and tolerance. New York: Raven, 1981:19–43.Search in Google Scholar

327. Halford J, Blundell J. 5-Hydroxytrypaminergic drugs compared on the behavioural sequence associated with satiety. Br J Pharmacol 1993;100:95.Search in Google Scholar

328. Clifton P. The neuropharmacology of meal patterning. In: Ethology and psychopharmacology. Chichester: Wiley, 1994:313–28.Search in Google Scholar

329. Vickers SP, Clifton PG, Dourish CT, Tecott LH. Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology 1999;143:309–14.10.1007/s002130050952Search in Google Scholar

330. Vickers SP, Dourish CT, Kennett GA. Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rat is mediated by 5-HT2C receptors. Neuropharmacology 2001;41:200–9.10.1016/S0028-3908(01)00063-6Search in Google Scholar

331. Kennett GA, Curzon G. Evidence that hypophagia induced by mCPP and TFMPP requires 5-HT1C and 5-HT1B receptors; hypophagia induced by RU 24969 only requires 5-HT1B receptors. Psychopharmacology 1988;96:93–100.10.1007/BF02431539Search in Google Scholar

332. Halford JC, Wanninayake SC, Blundell JE. Behavioral satiety sequence (BSS) for the diagnosis of drug action on food intake. Pharmacol Biochem Behav 1998;61:159–68.10.1016/S0091-3057(98)00032-XSearch in Google Scholar

333. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 1995;374:542–6.10.1038/374542a0Search in Google Scholar PubMed

334. Nonogaki K, Abdallah L, Goulding EH, Bonasera SJ, Tecott LH. Hyperactivity and reduced energy cost of physical activity in serotonin 5-HT(2C) receptor mutant mice. Diabetes 2003;52:315–20.10.2337/diabetes.52.2.315Search in Google Scholar PubMed

335. Grignaschi G, Mantelli B, Fracasso C, Anelli M, Caccia S, Samanin R. Reciprocal interaction of 5-hydroxytryptamine and cholecystokinin in the control of feeding patterns in rats. Br J Pharmacol 1993;109:491–4.10.1111/j.1476-5381.1993.tb13596.xSearch in Google Scholar PubMed PubMed Central

336. Poeschla B, Gibbs J, Simansky KJ, Greenberg D, Smith GP. Cholecystokinin-induced satiety depends on activation of 5-HT1C receptors. Am J Physiol 1993;264:R62–4.10.1152/ajpregu.1993.264.1.R62Search in Google Scholar PubMed

337. Stallone D, Nicolaidis S, Gibbs J. Cholecystokinin-induced anorexia depends on serotoninergic function. Am J Physiol 1989;256:R1138–41.10.1152/ajpregu.1989.256.5.R1138Search in Google Scholar PubMed

338. Asarian L. Loss of cholecystokinin and glucagon-like peptide-1-induced satiation in mice lacking serotonin 2C receptors. Am J Physiol Regul Integr Comp Physiol 2009;296:R51–6.10.1152/ajpregu.90655.2008Search in Google Scholar PubMed

339. Guy J, Pelletier G, Bosler O. Serotonin innervation of neuropeptide Y-containing neurons in the rat arcuate nucleus. Neurosci Lett 1988;85:9–13.10.1016/0304-3940(88)90419-3Search in Google Scholar

340. Choi S, Blake V, Cole S, Fernstrom JD. Effects of chronic fenfluramine administration on hypothalamic neuropeptide mRNA expression. Brain Res 2006;1087:83–6.10.1016/j.brainres.2006.02.129Search in Google Scholar

341. Dryden S, Frankish HM, Wang Q, Pickavance L, Williams G. The serotonergic agent fluoxetine reduces neuropeptide Y levels and neuropeptide Y secretion in the hypothalamus of lean and obese rats. Neuroscience 1996;72:557–66.10.1016/0306-4522(95)00566-8Search in Google Scholar

342. Bendotti C, Garattini S, Samanin R. Eating caused by neuropeptide-Y injection in the paraventricular hypothalamus: response to (+)-fenfluramine and (+)-amphetamine in rats. J Pharm Pharmacol 1987;39:900–3.10.1111/j.2042-7158.1987.tb03126.xSearch in Google Scholar

343. Grignaschi G, Sironi F, Samanin R. The 5-HT1B receptor mediates the effect of d-fenfluramine on eating caused by intra-hypothalamic injection of neuropeptide Y. Eur J Pharmacol 1995;274:221–4.10.1016/0014-2999(94)00766-ZSearch in Google Scholar

344. Arletti R, Benelli A, Bertolini A. Influence of oxytocin on feeding behavior in the rat. Peptides 1989;10:89–93.10.1016/0196-9781(89)90082-XSearch in Google Scholar

345. Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR. Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol Endocrinol 2008;22:1723–34.10.1210/me.2008-0067Search in Google Scholar

346. Tolson KP, Gemelli T, Gautron L, Elmquist JK, Zinn AR, Kublaoui BM. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosci 2010;30:3803–12.10.1523/JNEUROSCI.5444-09.2010Search in Google Scholar

347. Zhang G, Cai D. Circadian intervention of obesity development via resting-stage feeding manipulation or oxytocin treatment. Am J Physiol Endocrinol Metab 2011;301:E1004–12.10.1152/ajpendo.00196.2011Search in Google Scholar

348. Lokrantz CM, Uvnas-Moberg K, Kaplan JM. Effects of central oxytocin administration on intraoral intake of glucose in deprived and nondeprived rats. Physiol Behav 1997;62:347–52.10.1016/S0031-9384(97)00021-8Search in Google Scholar

349. Olszewski PK, Klockars A, Olszewska AM, Fredriksson R, Schioth HB, Levine AS. Molecular, immunohistochemical, and pharmacological evidence of oxytocin’s role as inhibitor of carbohydrate but not fat intake. Endocrinology 2010;151:4736–44.10.1210/en.2010-0151Search in Google Scholar

350. Blevins JE, Schwartz MW, Baskin DG. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol 2004;287:R87–96.10.1152/ajpregu.00604.2003Search in Google Scholar

351. Rinaman L, Vollmer RR, Karam J, Phillips D, Li X, Amico JA. Dehydration anorexia is attenuated in oxytocin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2005;288:R1791–9.10.1152/ajpregu.00860.2004Search in Google Scholar

352. Camerino C. Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity 2009;17:980–4.10.1038/oby.2009.12Search in Google Scholar

353. Takayanagi Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K. Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport 2008;19:951–5.10.1097/WNR.0b013e3283021ca9Search in Google Scholar

354. Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, Piscitelli F, Legros JJ, Geenen V, Foti M, Wahli W, Di Marzo V, Rohner-Jeanrenaud F. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PloS One 2011;6:e25565.10.1371/journal.pone.0025565Search in Google Scholar

355. Morton GJ, Thatcher BS, Reidelberger RD, Ogimoto K, Wolden-Hanson T, Baskin DG, Schwartz MW, Blevins JE. Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. Am J Physiol Endocrinol Metab 2012;302:E134–44.10.1152/ajpendo.00296.2011Search in Google Scholar

356. Sawchenko PE. Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst 1983;9:13–26.10.1016/0165-1838(83)90129-7Search in Google Scholar

357. Rinaman L, Schwartz G. Anterograde transneuronal viral tracing of central viscerosensory pathways in rats. J Neurosci 2004;24:2782–6.10.1523/JNEUROSCI.5329-03.2004Search in Google Scholar

358. Wellman PJ. Norepinephrine and the control of food intake. Nutrition 2000;16:837–42.10.1016/S0899-9007(00)00415-9Search in Google Scholar

359. Callahan JB, Rinaman L. The postnatal emergence of dehydration anorexia in rats is temporally associated with the emergence of dehydration-induced inhibition of gastric emptying. Physiol Behav 1998;64:683–7.10.1016/S0031-9384(98)00139-5Search in Google Scholar

360. Jelsing J, Galzin AM, Guillot E, Pruniaux MP, Larsen PJ, Vrang N. Localization and phenotypic characterization of brainstem neurons activated by rimonabant and WIN55,212-2. Brain Res Bull 2009;78:202–10.10.1016/j.brainresbull.2008.10.014Search in Google Scholar

361. Rinaman L. Oxytocinergic inputs to the nucleus of the solitary tract and dorsal motor nucleus of the vagus in neonatal rats. J Comp Neurol 1998;399:101–09.10.1002/(SICI)1096-9861(19980914)399:1<101::AID-CNE8>3.0.CO;2-5Search in Google Scholar

362. Rinaman L. Hindbrain noradrenergic lesions attenuate anorexia and alter central cFos expression in rats after gastric viscerosensory stimulation. J Neurosci 2003;23:10084–92.10.1523/JNEUROSCI.23-31-10084.2003Search in Google Scholar

363. Rinaman L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 2011;300:R222–35.10.1152/ajpregu.00556.2010Search in Google Scholar

364. Uchoa ET, Sabino HA, Ruginsk SG, Antunes-Rodrigues J, Elias LL. Hypophagia induced by glucocorticoid deficiency is associated with an increased activation of satiety-related responses. J Appl Physiol 2009;106:596–604.10.1152/japplphysiol.90865.2008Search in Google Scholar

365. Rinaman L, Baker EA, Hoffman GE, Stricker EM, Verbalis JG. Medullary c-Fos activation in rats after ingestion of a satiating meal. Am J Physiol 1998;275:R262–8.10.1152/ajpregu.1998.275.1.R262Search in Google Scholar

366. Rinaman L, Verbalis JG, Stricker EM, Hoffman GE. Distribution and neurochemical phenotypes of caudal medullary neurons activated to express cFos following peripheral administration of cholecystokinin. J Comp Neurol 1993;338:475–90.10.1002/cne.903380402Search in Google Scholar

367. Rinaman L, Hoffman GE, Dohanics J, Le WW, Stricker EM, Verbalis JG. Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol 1995;360:246–56.10.1002/cne.903600204Search in Google Scholar

368. Grill HJ, Norgren R. Chronically decerebrate rats demonstrate satiation but not bait shyness. Science 1978;201:267–9.10.1126/science.663655Search in Google Scholar

369. Seeley RJ, Grill HJ, Kaplan JM. Neurological dissociation of gastrointestinal and metabolic contributions to meal size control. Behav Neurosci 1994;108:347–52.10.1037/0735-7044.108.2.347Search in Google Scholar

370. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 2004;7:335–6.10.1038/nn1214Search in Google Scholar PubMed

371. Berthoud HR. First step to losing fat: central melanocortin signaling and sympathetic lipolytic drive. Am J Physiol Regul Integr Comp Physiol 2005;289:R1236–7.10.1152/ajpregu.00575.2005Search in Google Scholar PubMed

372. Blevins JE, Morton GJ, Williams DL, Caldwell DW, Bastian LS, Wisse BE, Schwartz MW, Baskin DG. Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8. Am J Physiol Regul Integr Comp Physiol 2009; 296:R476–84.10.1152/ajpregu.90544.2008Search in Google Scholar PubMed PubMed Central

373. Wan S, Browning KN, Coleman FH, Sutton G, Zheng H, Butler A, Berthoud HR, Travagli RA. Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons. J Neurosci 2008;28:4957–66.10.1523/JNEUROSCI.5398-07.2008Search in Google Scholar PubMed PubMed Central

374. Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK, Grill HJ. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab 2010;11:77–83.10.1016/j.cmet.2009.10.009Search in Google Scholar PubMed PubMed Central

375. Williams DL, Grill HJ, Cummings DE, Kaplan JM. Overfeeding-induced weight gain suppresses plasma ghrelin levels in rats. J Endocrinol Invest 2006;29:863–8.10.1007/BF03349188Search in Google Scholar PubMed

376. Grill HJ, Donahey JC, King L, Kaplan JM. Contribution of caudal brainstem to d-fenfluramine anorexia. Psychopharmacology 1997;130:375–81.10.1007/s002130050253Search in Google Scholar PubMed

377. Kaplan JM, Song S, Grill HJ. Serotonin receptors in the caudal brainstem are necessary and sufficient for the anorectic effect of peripherally administered mCPP. Psychopharmacology 1998;137:43–9.10.1007/s002130050591Search in Google Scholar PubMed

378. Emond M, Schwartz GJ, Ladenheim EE, Moran TH. Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 1999;276:R1545–9.10.1152/ajpregu.1999.276.5.R1545Search in Google Scholar PubMed

379. Emond M, Ladenheim EE, Schwartz GJ, Moran TH. Leptin amplifies the feeding inhibition and neural activation arising from a gastric nutrient preload. Physiol Behav 2001;72:123–8.10.1016/S0031-9384(00)00393-0Search in Google Scholar

380. Morton GJ, Blevins JE, Williams DL, Niswender KD, Gelling RW, Rhodes CJ, Baskin DG, Schwartz MW. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J Clin Invest 2005;115:703–10.10.1172/JCI200522081Search in Google Scholar

381. Sawchenko PE. Evidence for differential regulation of corticotropin-releasing factor and vasopressin immunoreactivities in parvocellular neurosecretory and autonomic-related projections of the paraventricular nucleus. Brain Res 1987;437:253–63.10.1016/0006-8993(87)91641-6Search in Google Scholar

382. Sawchenko PE, Swanson LW. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 1982;205:260–72.10.1002/cne.902050306Search in Google Scholar

383. Peters JH, McDougall SJ, Kellett DO, Jordan D, Llewellyn-Smith IJ, Andresen MC. Oxytocin enhances cranial visceral afferent synaptic transmission to the solitary tract nucleus. J Neurosci 2008;28:11731–40.10.1523/JNEUROSCI.3419-08.2008Search in Google Scholar

384. Kirchgessner AL, Sclafani A, Nilaver G. Histochemical identification of a PVN-hindbrain feeding pathway. Physiol Behav 1988;42:529–43.10.1016/0031-9384(88)90154-0Search in Google Scholar

385. Baskin DG, Kim F, Gelling RW, Russell BJ, Schwartz MW, Morton GJ, Simhan HN, Moralejo DH, Blevins JE. A new oxytocin-saporin cytotoxin for lesioning oxytocin-receptive neurons in the rat hindbrain. Endocrinology 2010;151:4207–13.10.1210/en.2010-0295Search in Google Scholar PubMed PubMed Central

386. Blevins JE, Eakin TJ, Murphy JA, Schwartz MW, Baskin DG. Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res 2003;993:30–41.10.1016/j.brainres.2003.08.036Search in Google Scholar PubMed

387. Tung YC, Ma M, Piper S, Coll A, O’Rahilly S, Yeo GS. Novel leptin-regulated genes revealed by transcriptional profiling of the hypothalamic paraventricular nucleus. J Neurosci 2008;28:12419–26.10.1523/JNEUROSCI.3412-08.2008Search in Google Scholar PubMed PubMed Central

388. Liu H, Kishi T, Roseberry AG, Cai X, Lee CE, Montez JM, Friedman JM, Elmquist JK. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci 2003;23:7143–54.10.1523/JNEUROSCI.23-18-07143.2003Search in Google Scholar

389. Yosten GL, Samson WK. The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. Am J Physiol Regul Integr Comp Physiol 2010;298:R1642–7.10.1152/ajpregu.00804.2009Search in Google Scholar PubMed PubMed Central

Received: 2014-2-19
Accepted: 2014-3-17
Published Online: 2014-4-16
Published in Print: 2014-9-1

©2014 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Topic 3: Reproduction, Obesity and Food Intake: Role of Leptin, Sex Hormones and Neuroendocrine Control
  3. Review Articles
  4. Role of the adipocyte-derived hormone leptin in reproductive control
  5. Race differences in obesity and its relationship to the sex hormone milieu
  6. Neuroendocrine control of satiation
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2014-0010/pdf
Scroll to top button