Home Consecutive determination of softwood kraft lignin structure and molar mass from NMR measurements
Article
Licensed
Unlicensed Requires Authentication

Consecutive determination of softwood kraft lignin structure and molar mass from NMR measurements

  • Jerk Rönnols EMAIL logo , Anna Jacobs and Fredrik Aldaeus
Published/Copyright: April 7, 2017
Become an author with De Gruyter Brill

Abstract

The general molecular properties and in particular, the molar mass of lignin are of central importance for industrial applications, as these data govern important thermal and mechanical characteristics. The focus of the present paper is pulsed field gradient-nuclear magnetic resonance (PFG-NMR), which is suitable for determination of lignins’ weight-average molar mass, based on diffusion constants. The method is calibrated by lignin fractions characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). It could be demonstrated on a set of softwood kraft lignins that the PFG-NMR approach gives results in very good agreement with those obtained using conventional size exclusion chromatography (SEC).

Acknowledgments

RISE Research Institutes of Sweden, Altri, Ence, Fibria, Holmen, Mercer, Metsä Board, Metsä Fibre, SCA, Stora Enso, Södra and Valmet are gratefully acknowledged for financial support and supply of black liquors. Karolina Larsson and Anne-Marie Olsson are acknowledged for assistance with the SEC experiments.

References

Asikkala, J., Tamminen, T., Argyropoulos, D.S. (2012) Accurate and reproducible determination of lignin molar mass by acetobromination. J. Agric. Food. Chem. 60:8968–8973.10.1021/jf303003dSearch in Google Scholar PubMed

Baumberger, S., Abaecherli, A., Fasching, M., Gellerstedt, G., Gosselink, R., Hortling, B., Li, J., Saake, B., de Jong, E. (2007) Molar mass determination of lignins by size-exclusion chromatography: towards standardization of the method. Holzforschung 61:459–468.10.1515/HF.2007.074Search in Google Scholar

Cohen, Y., Avram, L., Frish, L. (2005) Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter-new insights. Angew. Chem. Int. Ed. 44:520–554.10.1002/anie.200300637Search in Google Scholar PubMed

Constant, S., Wienk, H. L. J., Frissen, A. E., de Peinder, P., Boelens, R., van Es, D. S., Griesel, R. J. H., Weckhuysen, B. M., Huijgen, W. J. J., Gosselink, R. J. A., and Bruijnincx, P. C. A. (2016) New insights into the structure and composition of technical lignins: a comparative characterization study. Green Chem. 18:2651–2665.10.1039/C5GC03043ASearch in Google Scholar

Gellerstedt, G. (1992) Gel permeation chromatography. In: Methods in lignin chemistry. Eds. Lin, S. Y., Dence, C. W. Springer-Verlag, Berlin. pp. 487–497.10.1007/978-3-642-74065-7_34Search in Google Scholar

Gosselink, R.J.A., Abächerli, A., Semke, H., Malherbe, R., Käuper, P., Nadif, A., van Dam, J.E.G. (2004) Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products 19:271–281.10.1016/j.indcrop.2003.10.008Search in Google Scholar

Holz, M., Heil, S.R., Sacco, A. (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2:4740–4742.10.1039/b005319hSearch in Google Scholar

Jacobs, A., Dahlman, O. (2000) Absolute molar mass of lignins by size exclusion chromatography and MALDI-TOF mass spectroscopy. Nord. Pulp Pap. Res. J. 15:120–127.10.3183/npprj-2000-15-02-p120-127Search in Google Scholar

Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S. (2007) Dissolution of wood in ionic liquids. J. Agric. Food Chem. 55:9142–9148.10.1021/jf071692eSearch in Google Scholar PubMed

Kosyakov, D.S., Ul’yanovskii, N.V., Sorokina, E.A., Gorbova, N.S. (2014) Optimization of sample preparation conditions in the study of lignin by MALDI mass spectrometry. J. Anal. Chem. 69:1344–1350.10.1134/S1061934814140056Search in Google Scholar

Kotliar, A.M. (1964) A critical evaluation of mathematical molecular weight distribution models proposed for real polymer distributions. I. Effects of a low molecular weight cut-off value. J. Polym. Sci., Part A 2:4303–4325.10.1002/pol.1964.100021005Search in Google Scholar

Li, W., Chung, H., Daeffler, C., Johnson, J.A., Grubbs, R.H. (2012) Application of 1H DOSY for facile measurement of polymer molecular weights. Macromolecules 45:9595–9603.10.1021/ma301666xSearch in Google Scholar

Liitiä, T.M., Maunu, S.L., Hortling, B., Toikka, M., Kilpeläinen, I. (2003) Analysis of technical lignins by two- and three-dimensional NMR spectroscopy. J. Agric. Food Chem. 51:2136–2143.10.1021/jf0204349Search in Google Scholar

Lundquist, K., Li, S., Parkås, J. (2009) 1H NMR database of lignin model compounds in different solvents. Göteborg: Chalmers University of Technology.Search in Google Scholar

Lundquist, K., Stomberg, R. (1988) On the occurrence of structural elements of the lignan type (β-β structures) in lignins-the crystal structures of (+)-pinoresinol and (±)-trans-3,4-divanillyltetrahydrofuran. Holzforschung 42:375–384.10.1515/hfsg.1988.42.6.375Search in Google Scholar

Lupoi, J.S., Singh, S., Parthasarathi, R., Simmons, B.A., Henry, R.J. (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sust. Energ. Rev. 49:871–906.10.1016/j.rser.2015.04.091Search in Google Scholar

Metzger, J.O., Bicke, C., Faix, O., Tuszynski, W., Angermann, R., Karas, M., Strupat, K. (1992) Matrix-assisted laser desorption mass spectrometry of lignins. Angew. Chem. Int. Ed. Engl. 31:762–764.10.1002/anie.199207621Search in Google Scholar

Netopilík, M., Podzimek, Š., Kratochvíl, P. (2001) Estimation of width of narrow molecular-weight distributions by size-exclusion chromatography with concentration and light scattering detection. J. Chromatogr. A, 922:25–36.10.1016/S0021-9673(01)00952-9Search in Google Scholar

Nishibe, S., Tsukamoto, H., Hisada, S. (1984) Effects of o-methylation and o-glucosylation on carbon-13 nuclear magnetic resonance chemical shifts of matairesinol, (+)-pinoresinol and (+)-epipinoresinol. Chem. Pharm. Bull. 32:4653–4657.10.1248/cpb.32.4653Search in Google Scholar

Norgren, M., Lindström, B. (2000) Physico-chemical characterization of a fractionated kraft lignin. Holzforschung 54:528–534.10.1515/HF.2000.089Search in Google Scholar

Pla, F. (1992) Vapor pressure osmometry. In: Methods in lignin chemistry. Eds. Lin, S.Y., Dence, C.W. Springer, Berlin, Heidelberg. pp. 509–517.10.1007/978-3-642-74065-7_36Search in Google Scholar

Rinaldi, R., Jastrzebski, R., Clough, M.T., Ralph, J., Kennema, M., Bruijnincx, P.C.A., Weckhuysen, B.M. (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55:2–5410.1002/anie.201510351Search in Google Scholar PubMed PubMed Central

Rönnols, J., Schweinebarth, H., Jacobs, A., Stevanic, J.S., Olsson, A-M., Reimann, A., Aldaeus, F. (2015) Structural changes in softwood kraft lignin during nonoxidative thermal treatment. Nord. Pulp Pap. Res. J. 30:550–561.10.3183/npprj-2015-30-04-p550-561Search in Google Scholar

Stejskal, E.O., Tanner, J.E., (1965) Spin diffusion measurements: spin echoes in the presence of a time dependent field gradient. J. Chem. Phys. 42:288–297.10.1063/1.1695690Search in Google Scholar

Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A.K., Ragauskas, A.J. (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels. Bioprod. Bioref. 8:836–856.10.1002/bbb.1500Search in Google Scholar

Tomani, P. (2010) The LignoBoost process. Cellul. Chem. Technol. 44:53–58.Search in Google Scholar

Tsierkezos, N.G., Kelarakis, A.E., Palaiologou, M.A. (2000) Densities, viscosities, refractive indices, and surface tensions of dimethyl sulfoxide + butyl acetate mixtures at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 45:395–398.10.1021/je990271tSearch in Google Scholar

Vainio, U., Maximova, N., Hortling, B., Laine, J., Stenius, P., Simola, L.K., Gravitis, J., Serimaa, R. (2004) Morphology of dry lignins and size and shape of dissolved kraft lignin particles by X-ray scattering. Langmuir 20:9736–974410.1021/la048407vSearch in Google Scholar PubMed

Wen, J.-L., Sun, S.-L., Xue, B-L., Sun, R.-C. (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391.10.3390/ma6010359Search in Google Scholar PubMed PubMed Central

Wu, D., Chen, A., Johnson, C.S. Jr. (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar gradient pulses. J. Magn. Reson. Ser. A 115:260–264.10.1006/jmra.1995.1176Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/hf-2016-0182).


Received: 2016-10-14
Accepted: 2017-3-6
Published Online: 2017-4-7
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Original Articles
  5. About structural changes of lignin during kraft cooking and the kinetics of delignification
  6. Utilization of lignin powder for manufacturing self-binding HDF
  7. Consecutive determination of softwood kraft lignin structure and molar mass from NMR measurements
  8. Production of hemicellulose oligomers from softwood chips using autohydrolysis followed by an enzymatic post-hydrolysis
  9. Morphological features of aerogels and carbogels based on lignosulfonates
  10. Wood based activated carbons for supercapacitor electrodes with sulfuric acid electrolyte
  11. New insights into the decomposition mechanism of chlorine dioxide at alkaline pH
  12. Upgrading of commercial pulps to high-purity dissolving pulps by an ionic liquid-based extraction method
  13. Hardwood kraft pulp structural features affecting refinability
  14. Brightness stability of eucalyptus-dissolving pulps: effect of the bleaching sequence
  15. Cellulose fiber based fungal and water resistant insulation materials
  16. Biomass conversion into blow-in heat insulation materials by steam explosion
  17. Effect of cationic polyelectrolytes in contact-active antibacterial layer-by-layer functionalization
  18. Nanocelluloses obtained by ammonium persulfate (APS) oxidation of bleached kraft pulp (BKP) and bacterial cellulose (BC) and their application in biocomposite films together with chitosan
  19. Volatile terpene extraction of spruce, fir and maritime pine wood: supercritical CO2 extraction compared to classical solvent extractions and steam distillation
  20. Protective effects of proanthocyanidins extracts from the bark of deciduous trees in lipid systems
  21. Short Notes
  22. Steam explosion treatments of technical hydrolysis lignin
  23. Moisture absorption properties of hardwood veneers modified by a sol-gel process
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2016-0182/html
Scroll to top button