Home Fekete–Szegő problem of strongly α-close-to-convex functions associated with generalized fractional operator
Article
Licensed
Unlicensed Requires Authentication

Fekete–Szegő problem of strongly α-close-to-convex functions associated with generalized fractional operator

  • Ammar S. Issa and Maslina Darus EMAIL logo
Published/Copyright: November 11, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, we solve the Fekete–Szegő problem of a strongly α-close-to-convex functions associated with generalized fractional operator.

MSC 2010: 30C45

Funding statement: The work here is supported by MOHE grant FRGS/1/2019/STG06/UKM/01/1.

References

[1] H. R. Abdel-Gawad and D. K. Thomas, The Fekete–Szegő problem for strongly close-to-convex functions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 345–349. 10.1090/S0002-9939-1992-1065939-0Search in Google Scholar

[2] A. Chonweerayoot, D. K. Thomas and W. Upakarnitikaset, On the coefficients of close-to-convex functions, Math. Japon. 36 (1991), no. 5, 819–826. Search in Google Scholar

[3] M. Darus, Fekete–Szegő problem for α-close-to-convex functions, J. Comput. Math. Optim. 1 (2005), no. 1, 45–53. Search in Google Scholar

[4] M. Darus and D. K. Thomas, On the Fekete–Szegő theorem for close-to-convex functions, Math. Japon. 44 (1996), no. 3, 507–511. Search in Google Scholar

[5] M. Darus and D. K. Thomas, On the Fekete–Szegő theorem for close-to-convex functions, Math. Japon. 47 (1998), no. 1, 125–132. Search in Google Scholar

[6] M. Darus and D. K. Thomas, The Fekete–Szegő theorem for strongly close-to-convex functions, Sci. Math. 3 (2000), no. 2, 201–212. Search in Google Scholar

[7] M. Fekete and G. Szegő, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 2, 85–89. 10.1112/jlms/s1-8.2.85Search in Google Scholar

[8] A. Issa and M. Darus, Generalized complex fractional derivative and integral operators for the unified class of analytic functions, Int. J. Math. Comput. Sci. 15 (2020), no. 3, 857–868. Search in Google Scholar

[9] M. Jahangiri, A coefficient inequality for a class of close-to-convex functions, Math. Japon. 41 (1995), no. 3, 557–559. Search in Google Scholar

[10] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–185. 10.1307/mmj/1028988895Search in Google Scholar

[11] O. S. Kwon and N. E. Cho, On the Fekete–Szegő problem for certain analytic functions, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 10 (2003), no. 4, 265–271. Search in Google Scholar

[12] R. R. London, Fekete–Szegő inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), no. 4, 947–950. 10.2307/2159520Search in Google Scholar

[13] C. Pommerenke, Univalent Functions, Studia Math. 25, Vandenhoeck & Ruprecht, Göttingen, 1975. Search in Google Scholar

[14] M. O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3 (1955), 59–62. 10.1307/mmj/1031710535Search in Google Scholar

Received: 2022-02-15
Revised: 2022-03-18
Accepted: 2022-03-22
Published Online: 2022-11-11
Published in Print: 2023-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2197/pdf
Scroll to top button