Home Mathematics Sublinear operators on weighted Hardy spaces with variable exponents
Article
Licensed
Unlicensed Requires Authentication

Sublinear operators on weighted Hardy spaces with variable exponents

  • Kwok-Pun Ho EMAIL logo
Published/Copyright: December 19, 2018

Abstract

We establish the mapping properties for some sublinear operators on weighted Hardy spaces with variable exponents by using extrapolation. In particular, we study the Calderón–Zygmund operators, the maximal Bochner–Riesz means, the intrinsic square functions and the Marcinkiewicz integrals on weighted Hardy spaces with variable exponents.


Communicated by Christopher D. Sogge


References

[1] D. Cruz-Uribe, A. Fiorenza, J. M. Martell and C. Pérez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239–264. Search in Google Scholar

[2] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl. 394 (2012), no. 2, 744–760. 10.1016/j.jmaa.2012.04.044Search in Google Scholar

[3] D. Cruz-Uribe and L.-A. D. Wang, Variable Hardy spaces, Indiana Univ. Math. J. 63 (2014), no. 2, 447–493. 10.1512/iumj.2014.63.5232Search in Google Scholar

[4] D. V. Cruz-Uribe, J. M. Martell and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Oper. Theory Adv. Appl. 215, Birkhäuser/Springer, Basel, 2011. 10.1007/978-3-0348-0072-3Search in Google Scholar

[5] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011. 10.1007/978-3-642-18363-8Search in Google Scholar

[6] Y. Ding, M.-Y. Lee and C.-C. Lin, Marcinkiewicz integral on weighted Hardy spaces, Arch. Math. (Basel) 80 (2003), no. 6, 620–629. 10.1007/s00013-003-4660-xSearch in Google Scholar

[7] M. Frazier, R. Torres and G. Weiss, The boundedness of Calderón–Zygmund operators on the spaces F˙pα,q, Rev. Mat. Iberoam. 4 (1988), no. 1, 41–72. 10.4171/RMI/63Search in Google Scholar

[8] J. García-Cuerva, Weighted Hp spaces, Dissertationes Math. (Rozprawy Mat.) 162 (1979), 1–63. Search in Google Scholar

[9] L. Grafakos, Modern Fourier Analysis, 2nd ed., Grad. Texts in Math. 250, Springer, New York, 2009. 10.1007/978-0-387-09434-2Search in Google Scholar

[10] V. Guliyev and Y. Sawano, Linear and sublinear operators on generalized Morrey spaces with non-doubling measures, Publ. Math. Debrecen 83 (2013), no. 3, 303–327. 10.5486/PMD.2013.5508Search in Google Scholar

[11] V. S. Guliyev, S. S. Aliyev and T. Karaman, Boundedness of a class of sublinear operators and their commutators on generalized Morrey spaces, Abstr. Appl. Anal. 2011 (2011), Article ID 356041. 10.1155/2011/356041Search in Google Scholar

[12] J. Hart and G. Lu, Hardy space estimates for Littlewood–Paley–Stein square functions and Calderón–Zygmund operators, J. Fourier Anal. Appl. 22 (2016), no. 1, 159–186. 10.1007/s00041-015-9413-2Search in Google Scholar

[13] J. Hart and L. Oliveira, Hardy space estimates for limited ranges of Muckenhoupt weights, Adv. Math. 313 (2017), 803–838. 10.1016/j.aim.2017.04.018Search in Google Scholar

[14] K.-P. Ho, Littlewood–Paley spaces, Math. Scand. 108 (2011), no. 1, 77–102. 10.7146/math.scand.a-15161Search in Google Scholar

[15] K.-P. Ho, Atomic decomposition of Hardy–Morrey spaces with variable exponents, Ann. Acad. Sci. Fenn. Math. 40 (2015), 31–62. 10.5186/aasfm.2015.4002Search in Google Scholar

[16] K.-P. Ho, Singular integral operators, John–Nirenberg inequalities and Triebel–Lizorkin type spaces on weighted Lebesgue spaces with variable exponents, Rev. Un. Mat. Argentina 57 (2016), no. 1, 85–101. Search in Google Scholar

[17] K.-P. Ho, Atomic decompositions of weighted Hardy spaces with variable exponents, Tohoku Math. J. (2) 69 (2017), no. 3, 383–413. 10.2748/tmj/1505181623Search in Google Scholar

[18] K.-P. Ho, Corrigendum to “Atomic decomposition of Hardy–Morrey spaces with variable exponents” [MR3310072], Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 1, 523–524. 10.5186/aasfm.2017.4219Search in Google Scholar

[19] K.-P. Ho, Sublinear operators on block type space, Sci. China Math., to appear. 10.1007/s11425-018-9441-9Search in Google Scholar

[20] M.-Y. Lee, Weighted norm inequalities of Bochner–Riesz means, J. Math. Anal. Appl. 324 (2006), no. 2, 1274–1281. 10.1016/j.jmaa.2005.07.085Search in Google Scholar

[21] X. Li and D. Yang, Boundedness of some sublinear operators on Herz spaces, Illinois J. Math. 40 (1996), no. 3, 484–501. 10.1215/ijm/1255986021Search in Google Scholar

[22] L. Liu and D. Yang, Boundedness of sublinear operators in Triebel–Lizorkin spaces via atoms, Studia Math. 190 (2009), no. 2, 163–183. 10.4064/sm190-2-5Search in Google Scholar

[23] S. Lu, Y. Ding and D. Yan, Singular Integrals and Related Topics, World Scientific, Hackensack, 2007. 10.1142/6428Search in Google Scholar

[24] S. Lu, K. Yabuta and D. Yang, Boundedness of some sublinear operators in weighted Herz-type spaces, Kodai Math. J. 23 (2000), no. 3, 391–410. 10.2996/kmj/1138044267Search in Google Scholar

[25] Y. Lu and Y. P. Zhu, Boundedness of some sublinear operators and commutators on Morrey–Herz spaces with variable exponents, Czechoslovak Math. J. 64(139) (2014), no. 4, 969–987. 10.1007/s10587-014-0147-0Search in Google Scholar

[26] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665–3748. 10.1016/j.jfa.2012.01.004Search in Google Scholar

[27] T. Quek and D. Yang, Calderón–Zygmund-type operators on weighted weak Hardy spaces over 𝐑n, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 1, 141–160. 10.1007/s101149900022Search in Google Scholar

[28] B. H. Qui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45–62. 10.1002/mana.19811030106Search in Google Scholar

[29] Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory 77 (2013), no. 1, 123–148. 10.1007/s00020-013-2073-1Search in Google Scholar

[30] Y. Sawano, K.-P. Ho, D. Yang and S. Yang, Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math. (Rozprawy Mat.) 525 (2017), 1–102. 10.4064/dm750-9-2016Search in Google Scholar

[31] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993. 10.1515/9781400883929Search in Google Scholar

[32] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Springer, Berlin, 1989. 10.1007/BFb0091154Search in Google Scholar

[33] R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 90 (1991), no. 442, 1–172. 10.1090/memo/0442Search in Google Scholar

[34] H. Wang and H. Liu, The intrinsic square function characterizations of weighted Hardy spaces, Illinois J. Math. 56 (2012), no. 2, 367–381. 10.1215/ijm/1385129953Search in Google Scholar

[35] M. Wilson, Weighted Littlewood–Paley Theory and Exponential-square Integrability, Lecture Notes in Math. 1924, Springer, Berlin, 2008. Search in Google Scholar

[36] X. Yan, D. Yang, W. Yuan and C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal. 271 (2016), no. 10, 2822–2887. 10.1016/j.jfa.2016.07.006Search in Google Scholar

[37] D. Yang and Y. Zhou, Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms, J. Math. Anal. Appl. 339 (2008), no. 1, 622–635. 10.1016/j.jmaa.2007.07.021Search in Google Scholar

[38] D. Yang and Y. Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. 29 (2009), no. 2, 207–218. 10.1007/s00365-008-9015-1Search in Google Scholar

[39] Y. Zhou, Boundedness of sublinear operators in Herz-type Hardy spaces, Taiwanese J. Math. 13 (2009), no. 3, 983–996. 10.11650/twjm/1500405453Search in Google Scholar

Received: 2018-01-14
Revised: 2018-11-09
Published Online: 2018-12-19
Published in Print: 2019-05-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0142/pdf
Scroll to top button