Home Mathematics On the automorphism group of a symplectic half-flat 6-manifold
Article
Licensed
Unlicensed Requires Authentication

On the automorphism group of a symplectic half-flat 6-manifold

  • Fabio Podestà ORCID logo and Alberto Raffero ORCID logo EMAIL logo
Published/Copyright: September 20, 2018

Abstract

We prove that the automorphism group of a compact 6-manifold M endowed with a symplectic half-flat SU(3)-structure has Abelian Lie algebra with dimension bounded by min{5,b1(M)}. Moreover, we study the properties of the automorphism group action and we discuss relevant examples. In particular, we provide new complete examples on T𝕊3 which are invariant under a cohomogeneity one action of SO(4).

MSC 2010: 53C10; 57S15

Communicated by Karl-Hermann Neeb


Funding statement: The authors were supported by GNSAGA of INdAM – Istituto Nazionale di Alta Matematica.

References

[1] A. V. Alekseevsky and D. V. Alekseevsky, Riemannian G-manifold with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993), no. 3, 197–211. Search in Google Scholar

[2] D. Andriot, New supersymmetric flux vacua with intermediate SU(2) structure, J. High Energy Phys. 2008 (2008), no. 8, 10.1088/1126-6708/2008/08/096. 10.1088/1126-6708/2008/08/096Search in Google Scholar

[3] L. Bedulli and L. Vezzoni, The Ricci tensor of SU(3)-manifolds, J. Geom. Phys. 57 (2007), no. 4, 1125–1146. 10.1016/j.geomphys.2006.09.007Search in Google Scholar

[4] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G2 structures, Differential Geometry (Valencia 2001), World Scientific, River Edge (2002), 115–133. 10.1142/9789812777751_0010Search in Google Scholar

[5] D. Conti and A. Tomassini, Special symplectic six-manifolds, Q. J. Math. 58 (2007), no. 3, 297–311. 10.1093/qmath/ham013Search in Google Scholar

[6] P. de Bartolomeis, Geometric structures on moduli spaces of special Lagrangian submanifolds, Ann. Mat. Pura Appl. (4) 179 (2001), 361–382. 10.1007/BF02505963Search in Google Scholar

[7] P. de Bartolomeis and A. Tomassini, On solvable generalized Calabi–Yau manifolds, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1281–1296. 10.5802/aif.2213Search in Google Scholar

[8] P. de Bartolomeis and A. Tomassini, On the Maslov index of Lagrangian submanifolds of generalized Calabi–Yau manifolds, Internat. J. Math. 17 (2006), no. 8, 921–947. 10.1142/S0129167X06003710Search in Google Scholar

[9] M. Fernández, V. Manero, A. Otal and L. Ugarte, Symplectic half-flat solvmanifolds, Ann. Global Anal. Geom. 43 (2013), no. 4, 367–383. 10.1007/s10455-012-9349-6Search in Google Scholar

[10] A. Fino and L. Ugarte, On the geometry underlying supersymmetric flux vacua with intermediate SU(2) structure, Classical Quantum Gravity 28 (2011), no. 7, Article ID 075004. 10.1088/0264-9381/28/7/075004Search in Google Scholar

[11] N. Hitchin, Stable forms and special metrics, Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao 2000), Contemp. Math. 288, American Mathematical Society, Providence (2001), 70–89. 10.1090/conm/288/04818Search in Google Scholar

[12] S.-C. Lau, L.-S. Tseng and S.-T. Yau, Non-Kähler SYZ mirror symmetry, Comm. Math. Phys. 340 (2015), no. 1, 145–170. 10.1007/s00220-015-2454-1Search in Google Scholar

[13] A. I. Malčev, On a class of homogeneous spaces, Amer. Math. Soc. Trans. 1951 (1951), no. 39, 1–33. Search in Google Scholar

[14] P. S. Mostert, On a compact Lie group acting on a manifold, Ann. of Math. (2) 65 (1957), 447–455. 10.2307/1970056Search in Google Scholar

[15] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531–538. 10.2307/1969716Search in Google Scholar

[16] F. Podestà and A. Raffero, Homogeneous symplectic half-flat 6-manifolds, Ann. Global Anal. Geom. (2018), 10.1007/s10455-018-9615-3. 10.1007/s10455-018-9615-3Search in Google Scholar

[17] F. Podestà and A. Spiro, Six-dimensional nearly Kähler manifolds of cohomogeneity one, J. Geom. Phys. 60 (2010), no. 2, 156–164. 10.1016/j.geomphys.2009.09.008Search in Google Scholar

[18] F. Podestà and A. Spiro, Six-dimensional nearly Kähler manifolds of cohomogeneity one (II), Comm. Math. Phys. 312 (2012), no. 2, 477–500. 10.1007/s00220-012-1482-3Search in Google Scholar

[19] M. B. Stenzel, Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math. 80 (1993), no. 2, 151–163. 10.1007/BF03026543Search in Google Scholar

[20] A. Tomassini and L. Vezzoni, On symplectic half-flat manifolds, Manuscripta Math. 125 (2008), no. 4, 515–530. 10.1007/s00229-007-0158-3Search in Google Scholar

Received: 2018-06-06
Published Online: 2018-09-20
Published in Print: 2019-01-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0137/pdf
Scroll to top button