Home Bounds on the discrepancy of linear recurring sequences over Galois rings
Article
Licensed
Unlicensed Requires Authentication

Bounds on the discrepancy of linear recurring sequences over Galois rings

  • Anton R. Vasin EMAIL logo
Published/Copyright: April 29, 2020

Abstract

We study the discrepancy of linear recurring sequences over Galois rings. By means of an estimate of an exponential sum some nontrivial bounds on the discrepancy are derived. It is shown that these bounds are asymptotically not worse than known estimates for maximal period linear recurring sequences over prime fields.


Note: Originally published in Diskretnaya Matematika (2019) 31, №3, 17–25 (in Russian).


References

[1] V.L. Kurakin, A.S. Kuzmin, A.V. Mikhalev, A.A. Nechaev, “Linear recurrent sequences over rings and modules”, J. Math. Sci, 76:6 (1995), 2793–2915.10.1007/BF02362772Search in Google Scholar

[2] A.S. Kuzmin, V.L. Kurakin, A.A. Nechaev, “Pseudorandom and multilinear sequences”, Trudy po diskretnoy matematike, 1 (1997), 139-202 (in Russian).Search in Google Scholar

[3] H. Niederreiter, “On the distribution of pseudo-random numbers generated by the linear congruential method. III”, Math. Comput., 30 (1976), 571–597.10.1090/S0025-5718-1976-0457392-1Search in Google Scholar

[4] H. Niederreiter, “Statistical tests for linear congruential pseudo-random numbers”, Proc. Comput. Statist. (Leiden), Comp-stat 1978, 1978, 398–404.Search in Google Scholar

[5] H. Niederreiter, “Statistical independence properties of Tausworthe pseudo-random numbers”, Proc. 3rd Caribbean Conf. on Combinatorics and Computing (Cave Hill, Barbados), 1981, 163–168.Search in Google Scholar

[6] H. Niederreiter, “Statistical tests for Tausworthe pseudo-random numbers”, Probability and Statistical Inference, D.Reidel Publ. Co., 1982, 265–274.10.1007/978-94-009-7840-9_25Search in Google Scholar

[7] H. Niederreiter, “The performance of k-step pseudorandom number generators under the uniformity test”, SIAMJ. Sci. Statist. Computing, 5 (1984), 798–810.10.1137/0905057Search in Google Scholar

[8] H. Niederreiter, “The serial test for digital k-step pseudorandom numbers”, Math. J. Okayama Univ., 30 (1988), 93–119.Search in Google Scholar

[9] H. Niederreiter, “A statistical analysis of generalized feedback shift register pseudorandom number generators”, SIAM J. Sci. Statist. Computing, 8 (1987), 1035–1051.10.1137/0908084Search in Google Scholar

[10] H. Niederreiter, “Point sets and sequences with small discrepancy”, Monatsh. Math., 104 (1987), 273–337.10.1007/BF01294651Search in Google Scholar

[11] H. Niederreiter, “Pseudorandom numbers generated from shift register sequences”, Lect. Notes Math., 1452, Springer, Berlin, Heidelberg, 1990, 165–177.10.1007/BFb0096988Search in Google Scholar

[12] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, J. Wiley & SONS, 1974, 390 pp.Search in Google Scholar

[13] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.10.1137/1.9781611970081Search in Google Scholar

[14] H. Niederreiter, A. Winterhof, Applied number theory, Springer International Publishing, 2015.10.1007/978-3-319-22321-6Search in Google Scholar

[15] P. Sole, D. Zinoviev, “Inversive congruential pseudorandom numbers over Galois rings”, Eur. J. Comb., 30:2 (2009), 458–467.10.1016/j.ejc.2008.04.004Search in Google Scholar

[16] E.V. Vernigora, “Inversive congruential generator over a Galois ring of dimension pl, J. Math. Sci., 182 (2012), 10–116.10.1007/s10958-012-0732-4Search in Google Scholar

[17] A.A. Nechaev, “Kerdock code in a cyclic form”, Discrete Math. Appl., 1:4 (1991), 365–384.10.1515/dma.1991.1.4.365Search in Google Scholar

[18] B.R. McDonald, Finite rings with identity, Pure Appl. Math., 28, Dekker, New York, 1974.Search in Google Scholar

[19] A.A. Nechaev, “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 283–311.10.1070/SM1994v078n02ABEH003470Search in Google Scholar

[20] K.L. Chung, “An estimate concerning the Kolmogoroff limit distribution”, Trans. Amer. Math. Soc., 67 (1949), 36–50.10.1090/S0002-9947-1949-0034552-5Search in Google Scholar

[21] T. Cochrane, “On a trigonometric inequality of Vinogradov”, J. Number Theory, 27:1 (1987), 9–16.10.1016/0022-314X(87)90045-XSearch in Google Scholar

[22] V. Sison, “Bases of the Galois ring GR(pr, m) over the integer ring Zpr”, Preprint gr-qc/0401010, 2016, https://arxiv.org/pdf/1410.0289.pdf.Search in Google Scholar

[23] A.R. Vasin, “Bounds on the frequencies of tuples on parts of the period of linear recurring sequences over Galois rings”, Discrete Math. Appl., 29:5 (2019), 335–343.10.1515/dma-2019-0031Search in Google Scholar

[24] O.V. Kamlovskii, “Frequency characteristics of coordinate sequences of linear recurrences over Galois rings”, Izv. Math., 77:6 (2013), 1130–1154.10.1070/IM2013v077n06ABEH002672Search in Google Scholar

Received: 2019-03-19
Published Online: 2020-04-29
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dma-2020-0012/html
Scroll to top button