Abstract
Bioenergy out of lignocellulosic biomass, especially from agricultural crop residues, is making massive inroads in our quest for sustainable environment. In the present study, detailed physico-chemical characterization, thermal degradation characteristics, and kinetics of pyrolysis of corn cob are reported. Thermogravimetric experiments were performed at different heating rates, such as, 10, 20, and 30 °C/min in an inert atmosphere. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves inferred the thermal behavior characteristics of corn cob. Significant content of cellulose and hemicellulose put together (76.23%) suggested tremendous potential of corn cob to give enhanced yield of bio-oil through pyrolysis. Maximum mass loss of 61.92% for corn cob was observed in the temperature range of 180–360 °C. The kinetic parameters for pyrolysis of corn cob were determined by employing model-free isoconversional methods like, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Starink. Activation energy from FWO (62.44 kJ/mol) and Starink (61.74 kJ/mol) method for pyrolysis of corn cob was found to be in close proximity. The results revealed prospective bioenergy potential of corn cob as a feedstock for pyrolysis process.
Acknowledgements
Authors are thankful to Prof. V.S. Moholkar, IIT Guwahati for providing TGA facility and to lab In-charge Mr. Dhiren Huzuri, IIT Guwahati for his kind co-operation in conducting the experiments.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Sawarkar, AN. Cavitation induced upgrading of heavy oil and bottom-of-the-barrel: a review. Ultrason Sonochem 2019 https://doi.org/10.1016/j.ultsonch.2019.104690.10.1016/j.ultsonch.2019.104690Search in Google Scholar PubMed
2. Dhyani, V, Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 2018;129:695–716 https://doi.org/10.1016/j.renene.2017.04.035.10.1016/j.renene.2017.04.035Search in Google Scholar
3. Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 2016;53:41–79 https://doi.org/10.1016/j.pecs.2015.10.002.10.1016/j.pecs.2015.10.002Search in Google Scholar
4. Salimi, P, Norouzi, O, Pourhoseini, SEM, Bartocci, P, Tavasoli, A, Di Maria, F, et al. Magnetic biochar obtained through catalytic pyrolysis of macroalgae: a promising anode material for Li-ion batteries. Renew Energy 2019;140:704–14. https://doi.org/10.1016/j.renene.2019.03.077.10.1016/j.renene.2019.03.077Search in Google Scholar
5. Ighalo, JO, Adeniyi, AG. Modelling of thermochemical energy recovery processes for switchgrass (Panicum virgatum). Indian Chem Eng 2020. https://doi.org/10.1080/00194506.2020.1711535.10.1080/00194506.2020.1711535Search in Google Scholar
6. Edrisi, SC, Abhilash, PC. Exploring marginal and degraded lands for biomass and bioenergy production. Renew Sustain Energy Rev 2016;54:153751. https://doi.org/10.1016/j.rser.2015.10.050.10.1016/j.rser.2015.10.050Search in Google Scholar
7. Gokul, PV, Singh, P, Singh, VP, Sawarkar, AN. Thermal behavior and kinetics of pyrolysis of areca nut husk. Energy Sources, Part A Recovery, Utilization, and Environmental Effects 2019;41:2906–16. https://doi.org/10.1080/15567036.2019.1582733.10.1080/15567036.2019.1582733Search in Google Scholar
8. Singh, S, Sawarkar, AN. Thermal decomposition aspects and kinetics of pyrolysis of garlic stalk. Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 2020. https://doi.org/10.1080/15567036.2020.1716891.10.1080/15567036.2020.1716891Search in Google Scholar
9. Singh, P, Singh, RK, Gokul, PV, Hasan, SH, Sawarkar, AN. Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources, Part A: recovery, Utilization, and Environmental Effects; 2020. https://doi.org/10.1080/15567036.2020.1736215.10.1080/15567036.2020.1736215Search in Google Scholar
10. Singh, RK, Pandey, D, Patil, T, Sawarkar, AN. Pyrolysis of banana leaves biomass: physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour Technol 2020;310. https://doi.org/10.1016/j.biortech.2020.123464.10.1016/j.biortech.2020.123464Search in Google Scholar PubMed
11. Abraham, A, Mathew, AK, Sindhu, R, Pandey, A, Binod, P. Potential of rice straw for bio-refining: an overview. Bioresour Technol 2016;215:29–36. https:/doi.org/10.1016/j.biortech.2016.04.011.10.1016/j.biortech.2016.04.011Search in Google Scholar
12. Cao, Q, Xie, K, Bao, W, Shen, S. Pyrolytic behavior of waste corn cob. Bioresour Technol 2004;94:83–9. https://doi.org/10.1016/j.biortech.2003.10.031.10.1016/j.biortech.2003.10.031Search in Google Scholar
13. Gai, C, Dong, Y, Zhang, T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol 2013;127:298–305. https://doi.org/10.1016/j.biortech.2012.09.089.10.1016/j.biortech.2012.09.089Search in Google Scholar
14. Balogun, AO, Lasode, OA, Mcdonald, AG. Thermochemical and pyrolytic analyses of Musa spp. residues from the rainforest belt of Nigeria. Environ Prog Sustain Energy 2018;37:1932–42. https://doi.org/10.1002/ep.12869.10.1002/ep.12869Search in Google Scholar
15. Kumar, M, Sabbarwal, S, Mishra, PK, Upadhyay, SN. Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Bioresour Technol 2019;279:262–70. https://doi.org/10.1016/j.biortech.2019.01.137.10.1016/j.biortech.2019.01.137Search in Google Scholar
16. Aboyade, AO, Hugo, TJ, Carrier, M, Meyer, EL, Stahl, R, Knoetze, JH, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugarcane bagasse in an inert atmosphere. Thermochim Acta 2011;517:81–9. https:/doi.org/10.1016/j.tca.2011.01.035.10.1016/j.tca.2011.01.035Search in Google Scholar
17. Sawarkar, AN, Singh, VP. Disparities in the kinetic results of pyrolysis of biomass: recent advances and the possible way forward. In: Paper presented at the 1st International Conference on Recent Advances in Bio-Energy Research (ICRABR-2015). Sardar Swaran Singh National Institute of Renewable Energy, Kapurthala, India; 2015.February 25–28.Search in Google Scholar
18. Lopez-Velazquez, MA, Santes, V, Balmaseda, J, Torres-Garcia, E. Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrol 2013;99:170–7. https://doi.org/10.1016/j.jaap.2012.09.016.10.1016/j.jaap.2012.09.016Search in Google Scholar
19. Ozawa, TA. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.10.1246/bcsj.38.1881Search in Google Scholar
20. Starink, MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 2003;404:163–76. https://doi.org/10.1016/S0040-6031(03)00144-8.10.1016/S0040-6031(03)00144-8Search in Google Scholar
21. Kissinger, HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 1956;57:217–21. https://doi.org/10.1.1.328.8962.10.6028/jres.057.026Search in Google Scholar
22. Shadangi, KP, Mohanty, K. Kinetic study and thermal analysis of the pyrolysis of non-edible oilseed powders by thermogravimetric and differential scanning calorimetric analysis. Renew Energy 2014;63:337–44. https://doi.org/10.1016/j.renene.2013.09.039.10.1016/j.renene.2013.09.039Search in Google Scholar
23. Mansaray, KG, Ghaly, AE. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis. Biomass Bioenergy 1999;17:19–31. https://doi.org/10.1016/S0961-9534(99)00022-7.10.1016/S0961-9534(99)00022-7Search in Google Scholar
24. Biagini, E, Fantei, A, Tognotti, L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim Acta 2008;472:55–63. https://doi.org/10.1016/j.tca.2008.03.015.10.1016/j.tca.2008.03.015Search in Google Scholar
25. Yang, H, Yan, R, Chen, H, Lee, DH, Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007;86:1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.10.1016/j.fuel.2006.12.013Search in Google Scholar
26. Giudicianni, P, Cardone, G, Ragucci, R. Cellulose, hemicellulose and lignin slow steam pyrolysis: thermal decomposition of biomass components mixtures. J Anal Appl Pyrol 2013;100:213–22. https://doi.org/10.1016/j.jaap.2012.12.026.10.1016/j.jaap.2012.12.026Search in Google Scholar
27. Singh, RK, Patil, T, Sawarkar, AN. Pyrolysis of garlic husk biomass: physico-chemical characterization, thermodynamic and kinetic analyses. Bioresource Technology Reports 2020;12:100558. https://doi.org/10.1016/j.biteb.2020.100558.10.1016/j.biteb.2020.100558Search in Google Scholar
28. Munir, S, Sattar, H, Nadeem, A, Azam, M. Thermal and kinetic performance analysis of corncobs, Falsa sticks, and Chamalang coal under oxidizing and inert atmospheres. Energy Sources, Part A Recovery, Util Environ Eff 2017;39:775–82. https://doi.org/10.1080/15567036.2016.1263254.10.1080/15567036.2016.1263254Search in Google Scholar
29. Thossaporn, O, Nakorn, T, Anqing, Z, Haibin, L. Pyrolysis behavior and kinetics of corn residue pellets and eucalyptus wood chips in a macro thermogravimetric analyzer. Case Studies in Thermal Engineering 2018;12:546–56. https://doi.org/10.1016/j.csite.2018.07.011.10.1016/j.csite.2018.07.011Search in Google Scholar
30. Akinwale, O, Aboyade, TJ, Hugo, MC, Edson, L, Meyer, RS, Johannes, HK, et al. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugarcane bagasse in an inert atmosphere. Thermochim Acta 2011;517:81–9. https://doi.org/10.1016/j.tca.2011.01.035.10.1016/j.tca.2011.01.035Search in Google Scholar
31. Xuan, L, Yang, Z, Zifu, L, Rui, F, Yaozhong, Z. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresour Technol 2014;170:76–82. https://doi.org/10.1016/j.biortech.2014.07.077.10.1016/j.biortech.2014.07.077Search in Google Scholar PubMed
32. Munir, S, Daood, SS, Nimmo, W, Cunliffe, AM, Gibbs, BM. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 2009;100:1413–18. https://doi.org/10.1016/j.biortech.2008.07.065.10.1016/j.biortech.2008.07.065Search in Google Scholar PubMed
33. Zhengqi, L, Wei, Z, Baihong, M, Chunlong, L, Qunyi, Z, Guangbo, Z. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models. Bioresour Technol 2008;99:7616–22. https://doi.org/10.1016/j.biortech.2008.02.003.10.1016/j.biortech.2008.02.003Search in Google Scholar PubMed
34. Xu, Y, Chen, B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 2013;146:485–93. https://doi.org/10.1016/j.biortech.2013.07.086.10.1016/j.biortech.2013.07.086Search in Google Scholar PubMed
35. Ahmad, MS, Mehmood, MA, Al Ayed, OS, Ye, G, Luo, H, Ibrahim, M. Kinetic analyses and pyrolytic behavior of Para grass (Urochloamutica) for its bioenergy potential. Bioresour Technol 2017;224:708–13. https://doi.org/10.1016/j.biortech.2016.10.090.10.1016/j.biortech.2016.10.090Search in Google Scholar PubMed
36. Mehmood, MA, Ye, G, Luo, H, Liu, C, Malik, S, Afzal, I. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 2017;228:18–24. https://doi.org/10.1016/j.biortech.2016.12.096.10.1016/j.biortech.2016.12.096Search in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial special section: selected extended papers from an International Conference on Energy and Environmental Technologies for Sustainable Development (CHEM-CONFLUX20)
- Research Articles
- Model based control strategies to control voltage of Proton Exchange Membrane Fuel Cell
- Nested control loop configuration for a three stage biological wastewater treatment process
- Energy saving in batch distillation for separation of ternary zeotropic mixture integrated with vapor recompression scheme: dynamics and control
- Pyrolysis of corn cob: physico-chemical characterization, thermal decomposition behavior and kinetic analysis
- Decolorization of Reactive Black B from wastewater by electro-coagulation: optimization using multivariate RSM and ANN
- Numerical simulation of the effect of baffle cut and baffle spacing on shell side heat exchanger performance using CFD
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial special section: selected extended papers from an International Conference on Energy and Environmental Technologies for Sustainable Development (CHEM-CONFLUX20)
- Research Articles
- Model based control strategies to control voltage of Proton Exchange Membrane Fuel Cell
- Nested control loop configuration for a three stage biological wastewater treatment process
- Energy saving in batch distillation for separation of ternary zeotropic mixture integrated with vapor recompression scheme: dynamics and control
- Pyrolysis of corn cob: physico-chemical characterization, thermal decomposition behavior and kinetic analysis
- Decolorization of Reactive Black B from wastewater by electro-coagulation: optimization using multivariate RSM and ANN
- Numerical simulation of the effect of baffle cut and baffle spacing on shell side heat exchanger performance using CFD