Home Technology Subjective task-load influences anthropomorphism during cooperative human and robot hand movements
Article
Licensed
Unlicensed Requires Authentication

Subjective task-load influences anthropomorphism during cooperative human and robot hand movements

  • Mertcan Kaya

    Mertcan Kaya, MSc, is PhD student at Robotics Research Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: human-robot interaction and adaptive robot control.

    and Kolja Kühnlenz

    Prof. Dr.-Ing. habil. Kolja Kühnlenz is professor of robotics and head of the Robotics Research Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: social robots, vision-guided robotics, networked robotics.

    EMAIL logo
Published/Copyright: January 6, 2025

Abstract

This paper investigates the influence of subjective task-load on perceived anthropomorphism dimensions within a cooperative pick-and-place task. Two different robot mounting configurations are chosen, which are assumed to differ with respect to motor interference, thus, leading to different levels of task-load. Results show significant dependencies of the anthropomorphism and animacy sub-scales of Godspeed and HRIES tests on several NASA-TLX dimensions, whereas positive changes of anthropomorphism dimensions are associated with increased task-load. It is known, that the level of anthropomorphism influences performance and user experience parameters during human-robot cooperative tasks. So, the investigated effect might increase the gap between robot capabilities and user expectations due to over-humanization and should be considered in cooperative action planning.

Zusammenfassung

In diesem Artikel wird der Einfluss der subjektiven Aufgabenbelastung auf die wahrgenommenen Anthropomorphismusdimensionen bei einer kooperativen Pick-and-Place-Aufgabe untersucht. Es werden zwei verschiedene Robotermontagekonfigurationen gewählt, die aufgrund unterschiedlicher erwarteter motorischer Interferenzen zu unterschiedlichen Belastungsniveaus führen. Die Ergebnisse zeigen signifikante Abhängigkeiten der Anthropomorphismus- und Animacy-Subskalen der Godspeed- und HRIES-Tests von mehreren NASA-TLX-Dimensionen, wobei positive Änderungen der Anthropomorphismusdimensionen mit einer erhöhten Aufgabenbelastung verbunden sind. Es ist bekannt, dass der Anthropomorphismusgrad die Leistungs- und Nutzererfahrungsparameter bei kooperativen Mensch-Roboter-Aufgaben beeinflusst. Der untersuchte Effekt könnte daher die Lücke zwischen Roboterfähigkeiten und Benutzererwartungen aufgrund von Überhumanisierung vergrößern und sollte bei der Planung kooperativer Aktionen berücksichtigt werden.


Corresponding author: Kolja Kühnlenz, Coburg University of Applied Sciences and Arts, P.O. Box 1652, D-96450 Coburg, Germany, E-mail: 

About the authors

Mertcan Kaya

Mertcan Kaya, MSc, is PhD student at Robotics Research Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: human-robot interaction and adaptive robot control.

Kolja Kühnlenz

Prof. Dr.-Ing. habil. Kolja Kühnlenz is professor of robotics and head of the Robotics Research Lab, Department of Electrical Engineering and Computer Science, Coburg University of Applied Sciences and Arts, Coburg, Germany. Research interests: social robots, vision-guided robotics, networked robotics.

  1. Research ethics: Ethics approval is given by the local ethics committee of Coburg University.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None.

  5. Conflict of interest: None.

  6. Research funding: This work is supported in part by the German research foundation (DFG), grant no. KU 2486/8-2.

  7. Data availability: On request.

References

[1] M. Mayer, et al.., “Self-optimising assembly systems based on cognitive technologies,” in Integrative Production Technology for High-Wage Countries, C. Brecher, Ed., Springer, 2012, pp. 877–990.Search in Google Scholar

[2] C. Brecher, S. Müller, S. Kur, and W. Lohse, “Towards anthropomorphic movements for industrial robots, likeability, perceived intelli-gence, and perceived safety of robots,” in Proc. 4th Int. Conf. Digit. Hum. Modeling and Applic in Health, Saf., Erg., and Risk Man, 2013.10.1007/978-3-642-39182-8_2Search in Google Scholar

[3] A. Kirsch, et al.., “Plan-based control of joint human-robot activities,” KI, vol. 24, no. 3, pp. 223–231, 2010. https://doi.org/10.1007/s13218-010-0043-1.Search in Google Scholar

[4] M. Faber, J. Bützler, and C. Schlick, “Human-robot cooperation in future production systems: analysis of requirements for designing an ergonomic work system,” Procedia Manuf., vol. 3, pp. 510–517, 2015. https://doi.org/10.1016/j.promfg.2015.07.215.Search in Google Scholar

[5] Y. Shen and G. Reinhart, “Safe assembly motion – a novel approach for applying human-robot co-operation in hybrid assembly systems,” in Proc. IEEE ICMA, 2013.10.1109/ICMA.2013.6617885Search in Google Scholar

[6] H. Bley, G. Reinhart, G. Seliger, M. Bernardi, and T. Korne, “Appropriate human involvement in assembly and disassembly,” CIRP Ann. – Manuf. Technol., vol. 53, pp. 487–509, 2004. https://doi.org/10.1016/s0007-8506(07)60026-2.Search in Google Scholar

[7] H. Petruck, S. Kuz, A. Mertens, and C. Schlick,“ Increasing Safety in Human-Robot Collaboration by Using Anthropomorphic Speed Profiles of Robot Movements,” in Proc. AHFE 2016 Int. Conf. Human Aspects of Advanced Manufacturing, Florida, USA, Walt Disney World, 2016.10.1007/978-3-319-41697-7_13Search in Google Scholar

[8] N. Spatola and T. Chaminade, “Cognitive load increases anthropomorphism of humanoid robot. The automatic path of anthropomorphism,” Int. J. Hum. Comput. Stud., vol. 167, 2022, Art. no. 102884. https://doi.org/10.1016/j.ijhcs.2022.102884.Search in Google Scholar

[9] R. B. Mars, F. X. Neubert, M. A. P. Noonan, J. Sallet, I. Toni, and M. F. S. Rushworth, “On the relationship between the “default mode network” and the “social brain.”,” Front. Hum. Neurosci., vol. 6, pp. 1–9, 2012. https://doi.org/10.3389/fnhum.2012.00189.Search in Google Scholar PubMed PubMed Central

[10] A. L. Darlow and S. A. Sloman, “Two systems of reasoning: architecture and relation to emotion,” Wiley Interdiscip. Rev. Cogn. Sci., vol. 1, no. 3, pp. 382–392, 2010. https://doi.org/10.1002/wcs.34.Search in Google Scholar PubMed

[11] J. S. B. T. Evans and K. E. Stanovich, “Dual-process theories of higher cognition: advancing the debate,” Perspect. Psychol. Sci., vol. 8, no. 3, pp. 223–241, 2013. https://doi.org/10.1177/1745691612460685.Search in Google Scholar PubMed

[12] J. Kilner, Y. Paulignan, and S. Blakemore, “An interference effect of observed biological movement on action,” Curr. Biol., vol. 13, no. 6, pp. 522–525, 2003. https://doi.org/10.1016/s0960-9822(03)00165-9.Search in Google Scholar PubMed

[13] T. Chaminade, D. Franklin, E. Oztop, and G. Cheng, “Motor interference between humans and humanoid robots: effect of biological and artificial motion,” in Proc. IEEE ICDL, 2005.Search in Google Scholar

[14] A. Kupferberg, S. Glasauer, M. Huber, M. Rickert, A. Knoll, and T. Brandt, “Biological movement increases acceptance of humanoid robots as human partners in motor interaction,” AI Soc., vol. 26, no. 4, pp. 339–345, 2011. https://doi.org/10.1007/s00146-010-0314-2.Search in Google Scholar

[15] K. Kühnlenz and B. Kühnlenz, “Motor interference of incongruent motions increases workload in close HRI,” Adv. Rob., vol. 34, no. 6, pp. 400–406, 2020. https://doi.org/10.1080/01691864.2020.1717614.Search in Google Scholar

[16] D. S. Syrdal, K. Dautenhahn, K. L. Koay, and M. L. Walters, “The negative attitudes towards robots scale and reactions to robot behaviour in a live human-robot interaction study. Adaptive and emergent behaviour and complex systems – proceedings of the 23rd convention of the society for the study of artificial intelligence and simulation of behaviour,” AISB, pp. 109–115, 2009.Search in Google Scholar

[17] T. Nomura, T. Kanda, T. Suzuki, and K. Kato, “Prediction of human behavior in human--robot interaction using psychological scales for anxiety and negative attitudes toward robots,” EEE Trans. Rob., vol. 24, no. 2, pp. 442–451, 2008. https://doi.org/10.1109/tro.2007.914004.Search in Google Scholar

[18] C. Bartneck, E. Croft, D. Kulic, and S. Zoghbi, “Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots,” Int. J. Soc. Rob., vol. 1, no. 1, pp. 71–81, 2009. https://doi.org/10.1007/s12369-008-0001-3.Search in Google Scholar

[19] N. Spatola, B. Kühnlenz, and G. Cheng, “Perception and evaluation in human–robot interaction: the human–robot interaction evaluation scale (HRIES)—a multicomponent approach of anthropomorphism,” Int. J. Soc. Rob., vol. 13, no. 7, pp. 1517–1539, 2021.10.1007/s12369-020-00667-4Search in Google Scholar

[20] M. J. Blanca, R. Alarcón, J. Arnau, R. Bono, and R. Bendayan, “Non‐normal data: is ANOVA still a valid option?” Psicothema, vol. 29, no. 4, pp. 552–557, 2017. https://doi.org/10.7334/psicothema2016.383.Search in Google Scholar PubMed

[21] M. J. Blanca, J. Arnau, F. J. García-Castro, R. Alarcón, and R. Bono, “Non-normal data in repeated measures ANOVA: impact on type I error and power,” Psicothema, vol. 35, no. 1, pp. 21–29, 2023. https://doi.org/10.7334/psicothema2022.292.Search in Google Scholar PubMed

[22] F. Calonne, M. Dubois-Sage, F. Jamet, and B. Jacquet, “Does cognitive load affect explicit anthropomorphism?” in Human and Artificial Rationalities, 2024, pp. 127–138.10.1007/978-3-031-55245-8_8Search in Google Scholar

[23] C. M. Carpinella, A. B. Wyman, M. A. Perez, and S. J. Stroessner, “The robotic social attributes scale (RoSAS): development and validation,” in 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, 2017.10.1145/2909824.3020208Search in Google Scholar

[24] S. Thellman, M. de Graaf, and T. Ziemke, “Mental state attribution to robots: a systematic review of conceptions, methods, and findings,” ACM Trans. Hum.-Robot Interact., vol. 11, no. 4, pp. 1–51, 2022. https://doi.org/10.1145/3526112.Search in Google Scholar

Received: 2024-02-10
Accepted: 2024-11-06
Published Online: 2025-01-06
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/auto-2024-0031/html
Scroll to top button