Home Well-rounded lattices from odd prime degree number fields in the ramified case
Article
Licensed
Unlicensed Requires Authentication

Well-rounded lattices from odd prime degree number fields in the ramified case

  • Jefferson Luiz Rocha Bastos , Robson Ricardo de Araujo EMAIL logo , Trajano Pires da Nóbrega Neto and Antonio Aparecido de Andrade
Published/Copyright: July 19, 2025
Become an author with De Gruyter Brill

Abstract

Recently, algebraic lattices have been widely considered for applications in coding theory and cryptography. Likewise, well-rounded lattices have proven useful for signal transmission in MIMO and SISO wiretap channels. Previous works have conducted extensive studies on well-rounded algebraic lattices. One of them demonstrates the existence of well-rounded lattices obtained through the Minkowski embedding, representing the image of ℤ-modules in the ring of integers of cyclic number fields 𝕂 of odd prime degree p, where p remains unramified in the extension 𝕂/ℚ. In this work, we consider the case where p is ramified in 𝕂/ℚ and introduce a family of ℤ-modules that realize well-rounded algebraic lattices in ℝp for many (potentially infinitely many) values of p.

MSC 2010: 11H06; 11R04; 11H71

Funding statement: This work was partially supported by CNPq under Grant No. 405842/2023-6 and by CAPES-PRINT-UNESP.

  1. Communicated by: M. Henk

References

[1] C. Alves, J. E. Strapasson, R. R. de Araujo, On well-rounded lattices and lower bounds for the minimum norm of ideal lattices. Arch. Math. (Basel) 124 (2025), 121–130. MR4857975 Zbl 0797815710.1007/s00013-024-02065-ySearch in Google Scholar

[2] A. A. Andrade, R. R. de Araujo, T. P. Nobrega Neto, J. L. R. Bastos, Algebraic lattices coming from ℤ-modules generalizing ramified prime ideals in odd prime degree cyclic number fields. To appear in Appl. Algebra Eng. Commun. Comput. (2025)10.1007/s00200-024-00666-2Search in Google Scholar

[3] R. R. Araujo, A. C. M. M. Chagas, A. A. Andrade, T. P. Nóbrega Neto, Trace form associated to cyclic number fields of ramified odd prime degree. J. Algebra Appl. 19 (2020), 2050080, 13 pages. MR4098944 Zbl 1448.1107410.1142/S0219498820500802Search in Google Scholar

[4] E. Bayer-Fluckiger, F. Oggier, E. Viterbo, New algebraic constructions of rotated Zn-lattice constellations for the Rayleigh fading channel. IEEE Trans. Inform. Theory 50 (2004), 702–714. MR2065655 Zbl 1182.9403410.1109/TIT.2004.825045Search in Google Scholar

[5] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, volume 290 of Grundlehren der mathematischen Wissenschaften. Springer 1999. MR1662447 Zbl 0915.5200310.1007/978-1-4757-6568-7Search in Google Scholar

[6] S. I. R. Costa, F. Oggier, A. Campello, J.-C. Belfiore, E. Viterbo, Lattices applied to coding for reliable and secure communications. Springer 2017. MR3753603 Zbl 1420.1100310.1007/978-3-319-67882-5Search in Google Scholar

[7] M. T. Damir, L. Fukshansky, Canonical basis twists of ideal lattices from real quadratic number fields. Houston J. Math. 45 (2019), 999–1019. MR4102866 Zbl 1446.11129Search in Google Scholar

[8] M. T. Damir, D. Karpuk, Well-rounded twists of ideal lattices from real quadratic fields. J. Number Theory 196 (2019), 168–196. MR3906473 Zbl 1442.1110210.1016/j.jnt.2018.09.017Search in Google Scholar

[9] M. T. Damir, A. Karrila, L. Amorós, O. W. Gnilke, D. Karpuk, C. Hollanti, Well-rounded lattices: towards optimal coset codes for Gaussian and fading wiretap channels. IEEE Trans. Inform. Theory 67 (2021), 3645–3663. MR4289342 Zbl 1475.9421010.1109/TIT.2021.3059749Search in Google Scholar

[10] M. T. Damir, G. Mantilla-Soler, Bases of minimal vectors in tame lattices. Acta Arith. 205 (2022), 265–285. MR4494417 Zbl 1510.1112210.4064/aa220408-18-8Search in Google Scholar

[11] R. R. de Araujo, S. I. R. Costa, Well-rounded algebraic lattices in odd prime dimension. Arch. Math. (Basel) 112 (2019), 139–148. MR3908832 Zbl 1429.1111810.1007/s00013-018-1232-7Search in Google Scholar

[12] L. Fukshansky, G. Henshaw, P. Liao, M. Prince, X. Sun, S. Whitehead, On well-rounded ideal lattices, II. Int. J. Number Theory 9 (2013), 139–154. MR2997495 Zbl 1296.1108510.1142/S1793042112501291Search in Google Scholar

[13] L. Fukshansky, K. Petersen, On well-rounded ideal lattices. Int. J. Number Theory 8 (2012), 189–206. MR2887890 Zbl 1292.1107710.1142/S179304211250011XSearch in Google Scholar

[14] L. Fukshansky, S. Wang, Positive semigroups in lattices and totally real number fields. Adv. Geom. 22 (2022), 503–512. MR4497180 Zbl 1508.1106610.1515/advgeom-2022-0011Search in Google Scholar

[15] O. W. Gnilke, A. Barreal, A. Karrila, H. T. N. Tran, D. A. Karpuk, C. Hollanti, Well-rounded lattices for coset coding in MIMO wiretap channels. 2016 26th International Telecommunication Networks and Applications Conf., Dunedin 2016, pages 289–294, IEEE Xplore 2017.10.1109/ATNAC.2016.7878824Search in Google Scholar

[16] O. W. Gnilke, H. T. N. Tran, A. Karrila, C. Hollanti, Well-rounded lattices for reliability and security in Rayleigh fading SISO channels. 2016 IEEE Information Theory Workshop, Cambridge 2016, pages 359–363, IEEE Xplore 2016.10.1109/ITW.2016.7606856Search in Google Scholar

[17] G. C. Jorge, A. A. de Andrade, S. I. R. Costa, J. E. Strapasson, Algebraic constructions of densest lattices. J. Algebra 429 (2015), 218–235. MR3320622 Zbl 1358.1107610.1016/j.jalgebra.2014.12.044Search in Google Scholar

[18] V. Lyubashevsky, C. Peikert, O. Regev, On ideal lattices and learning with errors over rings. In: Advances in cryptology—EUROCRYPT 2010, volume 6110 of Lecture Notes in Comput. Sci., 1–23, Springer 2010. MR2660480 Zbl 1279.9409910.1007/978-3-642-13190-5_1Search in Google Scholar

[19] J. Martinet, Perfect lattices in Euclidean spaces, volume 327 of Grundlehren der mathematischen Wissenschaften. Springer 2003. MR1957723 Zbl 1017.1103110.1007/978-3-662-05167-2Search in Google Scholar

[20] C. T. McMullen, Minkowski’s conjecture, well-rounded lattices and topological dimension. J. Amer. Math. Soc. 18 (2005), 711–734. MR2138142 Zbl 1132.1103410.1090/S0894-0347-05-00483-2Search in Google Scholar

[21] C. Peikert, A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10 (2014), 283–424. MR3494162 Zbl 1391.9478810.1561/0400000074Search in Google Scholar

[22] P. Samuel, Algebraic theory of numbers. Houghton Mifflin Co., Boston, MA 1970. MR265266 Zbl 0215.36001Search in Google Scholar

[23] B. K. Spearman, K. S. Williams, The discriminant of a cyclic field of odd prime degree. Rocky Mountain J. Math. 33 (2003), 1101–1122. MR2038542 Zbl 1074.1105910.1216/rmjm/1181069946Search in Google Scholar

[24] A. Srinivasan, A complete classification of well-rounded real quadratic ideal lattices. J. Number Theory 207 (2020), 349–355. MR4017950 Zbl 1460.1112510.1016/j.jnt.2019.07.014Search in Google Scholar

[25] D. T. Tran, N. H. Le, H. T. N. Tran, Well-rounded ideal lattices of cyclic cubic and quartic fields. Commun. Math. 31 (2023), 209–250. MR4656965 Zbl 0790297810.46298/cm.11138Search in Google Scholar

[26] L. C. Washington, Introduction to cyclotomic fields. Springer 1997. MR1421575 Zbl 0966.1104710.1007/978-1-4612-1934-7Search in Google Scholar

Received: 2024-07-22
Revised: 2025-01-22
Published Online: 2025-07-19
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2025-0018/html
Scroll to top button