On complexity of the anti-unification problem
-
E. V. Kostylev
and V. A. Zakharov
Abstract
In this paper we suggest a new algorithm of anti-unification of logic terms represented by acyclic directed graphs and estimate its complexity. The anti-unification problem consists of the following: for two given terms find the most specific term that has the given terms as instances. We suggest an anti-unification algorithm whose complexity linearly depends on the size of the most specific term it computes. It is thus established that the anti-unification problem is of almost the same complexity as the unification problem. It is also shown that there exist terms whose most specific term is of size O(n2), where n is the size of the graphs representing these terms.
© de Gruyter 2008
Articles in the same Issue
- Random polynomials over a finite field
- Random permutations with cycle lengths in a given finite set
- The Kloss convergence principle for products of random variables with values in a compact group and distributions determined by a Markov chain
- On enumeration of labelled connected graphs by the number of cutpoints
- Skew Laurent series rings and the maximum condition on right annihilators
- A block algorithm of Lanczos type for solving sparse systems of linear equations
- On complexity of the anti-unification problem
- Classification of indecomposable Abelian (v, 5)-groups
Articles in the same Issue
- Random polynomials over a finite field
- Random permutations with cycle lengths in a given finite set
- The Kloss convergence principle for products of random variables with values in a compact group and distributions determined by a Markov chain
- On enumeration of labelled connected graphs by the number of cutpoints
- Skew Laurent series rings and the maximum condition on right annihilators
- A block algorithm of Lanczos type for solving sparse systems of linear equations
- On complexity of the anti-unification problem
- Classification of indecomposable Abelian (v, 5)-groups