Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function
-
Bernadette C. Victor
and Bonnie F. Sloane
Abstract
Cysteine cathepsins play a fundamental role in tumor growth, invasion and migration, angiogenesis, and the metastatic cascade. Evidence of their overexpression in a wide array of human tumors has been well documented. Cysteine cathepsins seem to have a characteristic location-function relationship that leads to non-traditional roles such as those in development and pathology. For example, during tumor development, some cysteine cathepsins are found not just within lysosomes, but are also redistributed into presumptive exocytic vesicles at the cell periphery, resulting in their secretion. This altered localization contributes to non-lysosomal functions that have been linked to malignant progression. Mechanisms for altered localization are not well understood, but do include the interaction of cysteine cathepsins with binding partners that modulate intracellular trafficking and association with specific regions on the cell surface.
©2007 by Walter de Gruyter Berlin New York
Articles in the same Issue
- Proteinase Inhibitors and Biological Control – An Attractive International Symposia Series
- Two decades of thyroglobulin type-1 domain research
- Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function
- Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells
- ‘Species’ of peptidases
- Protease research in the era of systems biology
- Human and mouse homo-oligomeric meprin A metalloendopeptidase: substrate and inhibitor specificities
- Association of cathepsin E with tumor growth arrest through angiogenesis inhibition and enhanced immune responses
- Characterization and comparative 3D modeling of CmPI-II, a novel ‘non-classical’ Kazal-type inhibitor from the marine snail Cenchritis muricatus (Mollusca)
- Cellular localization of MAGI-1 caspase cleavage products and their role in apoptosis
- Differential methylation kinetics of individual target site strands by T4Dam DNA methyltransferase
- Characterisation of zinc-binding domains of peroxisomal RING finger proteins using size exclusion chromatography/inductively coupled plasma-mass spectrometry
- Defining the extended substrate specificity of kallikrein 1-related peptidases
- Latent MMP-9 is bound to TIMP-1 before secretion
- Novel expression of kallikreins, kallikrein-related peptidases and kinin receptors in human pleural mesothelioma
- Activity of ulilysin, an archaeal PAPP-A-related gelatinase and IGFBP protease
- Clinical chemistry reference database for Wistar rats and C57/BL6 mice
Articles in the same Issue
- Proteinase Inhibitors and Biological Control – An Attractive International Symposia Series
- Two decades of thyroglobulin type-1 domain research
- Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function
- Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells
- ‘Species’ of peptidases
- Protease research in the era of systems biology
- Human and mouse homo-oligomeric meprin A metalloendopeptidase: substrate and inhibitor specificities
- Association of cathepsin E with tumor growth arrest through angiogenesis inhibition and enhanced immune responses
- Characterization and comparative 3D modeling of CmPI-II, a novel ‘non-classical’ Kazal-type inhibitor from the marine snail Cenchritis muricatus (Mollusca)
- Cellular localization of MAGI-1 caspase cleavage products and their role in apoptosis
- Differential methylation kinetics of individual target site strands by T4Dam DNA methyltransferase
- Characterisation of zinc-binding domains of peroxisomal RING finger proteins using size exclusion chromatography/inductively coupled plasma-mass spectrometry
- Defining the extended substrate specificity of kallikrein 1-related peptidases
- Latent MMP-9 is bound to TIMP-1 before secretion
- Novel expression of kallikreins, kallikrein-related peptidases and kinin receptors in human pleural mesothelioma
- Activity of ulilysin, an archaeal PAPP-A-related gelatinase and IGFBP protease
- Clinical chemistry reference database for Wistar rats and C57/BL6 mice