Home Activity of ulilysin, an archaeal PAPP-A-related gelatinase and IGFBP protease
Article
Licensed
Unlicensed Requires Authentication

Activity of ulilysin, an archaeal PAPP-A-related gelatinase and IGFBP protease

  • Cynthia Tallant , Raquel García-Castellanos , Aniebrys Marrero , Francesc Canals , Yongzheng Yang , Jean-Louis Reymond , Maria Solà , Ulrich Baumann and F. Xavier Gomis-Rüth
Published/Copyright: November 2, 2007
Biological Chemistry
From the journal Volume 388 Issue 11

Abstract

Human growth and development are conditioned by insulin-like growth factors (IGFs), which have also implications in pathology. Most IGF molecules are sequestered by IGF-binding proteins (IGFBPs) so that exertion of IGF activity requires disturbance of these complexes. This is achieved by proteolysis mediated by IGFBP proteases, among which the best characterised is human PAPP-A, the first member of the pappalysin family of metzincins. We have previously identified and studied the only archaeal homologue found to date, Methanosarcina acetivorans ulilysin. This is a proteolytically functional enzyme encompassing a pappalysin catalytic domain and a pro-domain involved in maintenance of latency of the zymogen, proulilysin. Once activated, the protein hydrolyses IGFBP-2 to -6 and insulin chain β in vitro. We report here that ulilysin is also active against several other substrates, viz (azo)casein, azoalbumin, and extracellular matrix components. Ulilysin has gelatinolytic but not collagenolytic activity. Moreover, the proteolysis-resistant skeletal proteins actin and elastin are also cleaved, as is fibrinogen, but not plasmin and α1-antitrypsin from the blood coagulation cascade. Ulilysin develops optimal activity at pH 7.5 and strictly requires peptide bonds preceding an arginine residue, as determined by means of a novel fluorescence resonance energy transfer assay, thus pointing to biotechnological applications as an enzyme complementary to trypsin.


Corresponding authors ;

Received: 2007-5-8
Accepted: 2007-7-12
Published Online: 2007-11-02
Published in Print: 2007-11-01

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Proteinase Inhibitors and Biological Control – An Attractive International Symposia Series
  2. Two decades of thyroglobulin type-1 domain research
  3. Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function
  4. Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells
  5. ‘Species’ of peptidases
  6. Protease research in the era of systems biology
  7. Human and mouse homo-oligomeric meprin A metalloendopeptidase: substrate and inhibitor specificities
  8. Association of cathepsin E with tumor growth arrest through angiogenesis inhibition and enhanced immune responses
  9. Characterization and comparative 3D modeling of CmPI-II, a novel ‘non-classical’ Kazal-type inhibitor from the marine snail Cenchritis muricatus (Mollusca)
  10. Cellular localization of MAGI-1 caspase cleavage products and their role in apoptosis
  11. Differential methylation kinetics of individual target site strands by T4Dam DNA methyltransferase
  12. Characterisation of zinc-binding domains of peroxisomal RING finger proteins using size exclusion chromatography/inductively coupled plasma-mass spectrometry
  13. Defining the extended substrate specificity of kallikrein 1-related peptidases
  14. Latent MMP-9 is bound to TIMP-1 before secretion
  15. Novel expression of kallikreins, kallikrein-related peptidases and kinin receptors in human pleural mesothelioma
  16. Activity of ulilysin, an archaeal PAPP-A-related gelatinase and IGFBP protease
  17. Clinical chemistry reference database for Wistar rats and C57/BL6 mice
Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2007.143/html
Scroll to top button