Home Nicking activity on pBR322 DNA of ribosome inactivating proteins from Phytolacca dioica L. leaves
Article
Licensed
Unlicensed Requires Authentication

Nicking activity on pBR322 DNA of ribosome inactivating proteins from Phytolacca dioica L. leaves

  • Serena Aceto , Antimo Di Maro , Barbara Conforto , Gesualdo G. Siniscalco , Augusto Parente , Pasquale Delli Bovi and Luciano Gaudio
Published/Copyright: July 5, 2005
Biological Chemistry
From the journal Volume 386 Issue 4

Abstract

Ribosome-inactivating proteins isolated from Phytolacca dioica L. leaves are rRNA-N-glycosidases, as well as adenine polynucleotide glycosylases. Here we report that some of them cleave supercoiled pBR322 dsDNA, generating relaxed and linear molecules. PD-L1, the glycosylated major form isolated from the winter leaves of adult P. dioica plants, produces both free 3′-OH and 5′-P termini randomly distributed along the DNA molecule, as suggested by labelling experiments with [α-32P]dCTP and [γ-32P]dATP. Moreover, when the reaction is carried out under low-salt conditions, cleavage is observed mainly at a specific site, located downstream of the ampicillin resistance gene (close to position 3200), ending with the deletion of a fragment of approximately 70 nucleotides. This cleavage pattern is similar to that obtained under the same conditions with mung bean nuclease, a single-strand endonuclease. Furthermore, pBR322 DNA treated with PD-L1 shows reduced transforming activity with E. coli HB101 competent cells in comparison to untreated control plasmid DNA.

:

Corresponding author

References

Adams, R.L.P., Knowler, J.T., and Leader, D.P. (1986). Degradation and modification of nucleic acids. In: The Biochemistry of the Nucleic Acids, Xth edition (London – New York: Chapman and Hall), p. 87.Search in Google Scholar

Amir-Aslani, A., Mauffret, O., Bittoun, P., Sourgen, F., Monnot, M., Lescot, E., and Fennandjian, S. (1995). Hairpins in a DNA site for topoisomerase II studied by 1H- and 31P-NMR. Nucleic Acids Res.23, 3850–3857.10.1093/nar/23.19.3850Search in Google Scholar

Bagga, S., Seth, D., and Batra, J.K. (2003). The cytotoxic activity of ribosome-inactivating protein saporin-6 is attributed to rRNA N-glycosidase and internucleosomal DNA fragmentation. J. Biol. Chem.14, 4813–4820.10.1074/jbc.M207389200Search in Google Scholar

Barbieri, L., Battelli, M.G., and Stirpe, F. (1993). Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta1154, 237–282.10.1016/0304-4157(93)90002-6Search in Google Scholar

Barbieri, L., Valbonesi, P., Gorini, P., Pession, A., and Stirpe, F. (1996). Polynucleotide: adenosine glycosidase activity of saporin-L1: effect on DNA, RNA and poly(A). Biochem. J.319, 507–513.10.1042/bj3190507Search in Google Scholar

Barbieri, L., Valbonesi, P., Bonora, E., Gorini, P., Bolognesi, A. and Stirpe, F. (1997). Polynucleotide: adenosine glycosidase activity of ribosome-inactivating proteins: effect on DNA, RNA and poly(A). Nucleic Acids Res.25, 518–522.10.1093/nar/25.3.518Search in Google Scholar

Barbieri, L., Valbonesi, P., Righi, F., Zuccheri, G., Monti, F., Gorini, P., Samorì, B., and Stirpe, F. (2000). Polynucleotide: adenosine glycosidase is the sole activity of ribosome-inactivating proteins on DNA. J. Biochem. (Tokyo)128, 883–889.10.1093/oxfordjournals.jbchem.a022827Search in Google Scholar

Barbieri, L., Brigotti, M., Perocco, P., Carnicelli, D., Ciani, M., Mercatali, L., and Stirpe, F. (2003). Ribosome-inactivating proteins depurinate poly(ADP-ribosyl)ated poly(ADP-ribose) polymerase and have transforming activity for 3T3 fibroblasts. FEBS Lett.538, 178–182.10.1016/S0014-5793(03)00176-5Search in Google Scholar

Bolognesi, A., Polito, L., Lubelli C., Barbieri, L., Parente, A., and Stirpe, F. (2002). Ribosome-inactivating and adenine polynucleotide glycosylase activities in Mirabilis jalapa L. tissues. J. Biol. Chem.277, 13709–13716.10.1074/jbc.M111514200Search in Google Scholar

Brigotti, M., Alfieri, R., Sestili, P., Bonelli, M., Petronini, P.G., Guidarelli, A., Barbieri, L., Stirpe, F., and Sperti, S. (2002). Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. FASEB J.16, 365–372.10.1096/fj.01-0521comSearch in Google Scholar

Citores, L., Ferreras, J.M., Iglesias, R., Garbajales, M.L., Axias, F.J., Jimenez, P., Rojo, M.A., and Girbes, T. (1993). Molecular mechanism of inhibition of mammalian protein synthesis by some four-chain agglutinins. Proposal of an extended classification of plant ribosome-inactivating proteins (rRNA N-glycosidases). FEBS Lett.329, 59–62.10.1016/0014-5793(93)80193-XSearch in Google Scholar

Conforto, B. (2002). Studio dell'espressione e della localizzazione di Proteine Inattivanti i Ribosomi in foglie di Phytolacca dioica L. Ph.D. thesis (in Italian) (Caserta, Italy: Seconda Università di Napoli).Search in Google Scholar

Day, P.J., Lord, J.M., and Roberts, L.M. (1998). The deoxyribonuclease activity attributed to ribosome-inactivating proteins is due to contamination. Eur. J. Biochem.258, 540–545.10.1046/j.1432-1327.1998.2580540.xSearch in Google Scholar

De Benito, F.M., Citores, L., Iglesias, R., Ferreras, M.J., Soriano, F., Arias, J., Mendez, E., and Girbes, T. (1995). Ebulitins: a new family of type 1 ribosome-inactivating proteins (rRNA N-glycosidases) from leaves of Sambucus ebulus L. that coexist with the type 2 ribosome-inactivating protein ebulin 1. FEBS Lett.360, 299–302.Search in Google Scholar

Desai, N.A. and Shankar, V. (2003). Single-strand-specific nucleases. FEMS Microbiol. Rev.26, 457–491.10.1111/j.1574-6976.2003.tb00626.xSearch in Google Scholar

Di Maro, A., Valbonesi, P., Bolognesi, A., Stirpe, F., De Luca, P., Siniscalco Gigliano, G., Gaudio, L., Delli Bovi, P., Ferranti, P., Malori, A., and Parente, A. (1999). Isolation and characterization of four type-1 ribosome-inactivating proteins, with polynucleotide: adenosine glycosidase activity, from leaves of Phytolacca dioicaL. Planta208, 125–131.10.1007/s004250050542Search in Google Scholar

Dunaeva, M., Goebel, C., Wasternack, C., Parthier, B., and Goerschen, E. (1999). The jasmonate-induced 60 kDa protein of barley exhibits N-glycosidase activity in vivo. FEBS Lett.452, 263–266.10.1016/S0014-5793(99)00645-6Search in Google Scholar

Endo, Y., Mitsui, K., Motizukin, M., and Tsurugi, K. (1987). The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem.262, 5908–5912.Search in Google Scholar

Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, T., and Igarashi, K. (1988). Site of action of a Vero toxin (VT2) from Escherichia coli 0157: H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem.171, 45–50.Search in Google Scholar

Hao, Q., Peumans, W.J., and Van Damme, E.J. (2001). Type-1 ribosome-inactivating protein from iris (Iris hollandica var. Professor Blaauw) binds specific genomic DNA fragments. Biochem. J.357, 875–880.Search in Google Scholar

Hartley, M.R., Legname, G., Osborn R., Chen, Z., and Lord, J.M. (1991). Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett.290, 65–68.10.1016/0014-5793(91)81227-YSearch in Google Scholar

Huang, Y. and Kowalski, D. (2003). In Web-Thermodyn: sequence analysis software for profiling DNA helical stability. Nucleic Acids Res.31, 3819–3821.10.1093/nar/gkg562Search in Google Scholar

Kowalski, D., Kroeker, W.D., and Laskowski, M. Sr. (1976). Mung bean nuclease I. Physical, chemical, and catalytic properties. Biochemistry15, 4457–4463.Search in Google Scholar

Kowalski, D., Natale D.A., and Eddy, M.J. (1988). Stable DNA unwinding, not ‘breathing’, accounts for single-strand-specific nuclease hypersensitivity of specific A+T-rich sequences. Proc. Natl. Acad. Sci. USA85, 9464–9468.10.1073/pnas.85.24.9464Search in Google Scholar

Li, M.X., Yeung, H.W., Pan, L.P., and Chan, S.I. (1991). Trichosanthin, a potent HIV-1 inhibitor, can cleave supercoiled DNA in vitro. Nucleic Acids Res.19, 6309–6312.10.1093/nar/19.22.6309Search in Google Scholar

Ling, J., Liu, W, and Wang, T.P. (1994). Cleavage of supercoiled double-stranded DNA by several ribosome-inactivating proteins in vitro. FEBS Lett.345, 143–146.10.1016/0014-5793(94)00421-8Search in Google Scholar

Liu, R.S., Yang, J.H., and Liu, W.Y. (2002a). Isolation and enzymatic characterisation of lamjapin, the first ribosome-inactivating protein from cryptogamic algal plant (Laminaria japonica A). Eur. J. Biochem.269, 4746–4752.10.1046/j.1432-1033.2002.03165.xSearch in Google Scholar PubMed

Liu, R.S., Wei, G.Q., Yang, Q., He, W.J., and Liu, W.Y. (2002b). Cinnamomin, a type II ribosome-inactivating protein, is a storage protein in the seed of the camphor tree (Cinnamomum camphora). Biochem. J.362, 659–663.10.1042/bj3620659Search in Google Scholar

Nicolas, E., Beggs, J.M., Haltiwanger, B.M., and Taraschi, T.F. (1997a). Direct evidence for the deoxyribonuclease activity of the plant ribosome inactivating protein gelonin. FEBS Lett.406, 162–164.10.1016/S0014-5793(97)00267-6Search in Google Scholar

Nicolas, E., Goodyer, I.D., and Taraschi, T.F. (1997b). An additional mechanism of ribosome-inactivating protein cytotoxicity: degradation of extrachromosomal DNA. Biochem. J.327, 413–417.10.1042/bj3270413Search in Google Scholar

Nielsen, K. and Boston, R.S. (2001). Ribosome-inactivating proteins: a plant perspective. Annu. Rev. Plant Physiol. Plant. Mol. Biol.52, 785–816.10.1146/annurev.arplant.52.1.785Search in Google Scholar

Parente, A., De Luca, P., Bolognesi, A., Battelli, M.G., Abbondanza, A., Sande, M.J.W., Siniscalco Gigliano, G., Tazzari, P.L., and Stirpe, F. (1993). Purification and partial characterization of single-chain ribosome-inactivating proteins from the seeds of Phytolacca dioicaL. Biochim. Biophys. Acta1216, 43–49.10.1016/0167-4781(93)90035-CSearch in Google Scholar

Park, S.W., Vepachedu, R., Owens, R.A., and Vivanco, J.M. (2004). The N-glycosidase activity of the ribosome-inactivating protein ME1 targets single-stranded regions of nucleic acids independent of sequence or structural motifs. J. Biol. Chem.279, 34165–34174.10.1074/jbc.M400105200Search in Google Scholar

Peumans, W.J., Hao, Q., and Van Damme, E.J. (2001). Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J.15, 1493–1506.10.1096/fj.00-0751revSearch in Google Scholar

Roncuzzi, L. and Gasperi-Campani, A. (1996). DNA-nuclease activity of the single-chain ribosome-inactivating proteins dianthin 30, saporin 6 and gelonin. FEBS Lett.392, 16–20.10.1016/0014-5793(96)00776-4Search in Google Scholar

Sambrook, J., Fitsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, New York, USA: Cold Spring Harbor Laboratory Press).Search in Google Scholar

Sheflin, L.G. and Kowalski, D. (1985). Altered DNA conformations detected by Mung bean nuclease occur in promoter and terminator regions of supercoiled pBR322 DNA. Nucleic Acids Res.13, 6137–6154.10.1093/nar/13.17.6137Search in Google Scholar PubMed PubMed Central

Wang, P. and Tumer, N.E. (1999). Pokeweed antiviral protein cleaves double-stranded supercoiled DNA using the same active site required to depurinate rRNA. Nucleic Acids Res.27, 1900–1905.10.1093/nar/27.8.1900Search in Google Scholar PubMed PubMed Central

Wang, Y.X., Neamati, N., Jacob, J., Palmer, I., Stahl, S.J., Kaufman, J.D., Huang, P.L., Huang, P.L., Winslow, H.E., Pommier, Y., et al. (1999). Solution structure of anti-HIV-1 and anti-tumor protein MAP30: structural insights into its multiple functions. Cell99, 433–442.10.1016/S0092-8674(00)81529-9Search in Google Scholar

Yao, Q.Z., Yu, M.M., Ooi, L.S.M., Ng, T.B., Chang, S.T., Sun, S.S.M., and Ooi, V.E.C. (1998). Isolation and characterisation of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (Volvariella volvacea). J. Agric. Food Chem.46, 788–792.10.1021/jf970551hSearch in Google Scholar PubMed

Published Online: 2005-07-05
Published in Print: 2005-04-01

© by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Supplementary material to the paper “The connexin gene family in mammals”
  2. Nicking activity on pBR322 DNA of ribosome inactivating proteins from Phytolacca dioica L. leaves
  3. Identification of three novel mutations in the dihydropyrimidine dehydrogenase gene associated with altered pre-mRNA splicing or protein function
  4. The connexin gene family in mammals
  5. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA
  6. Homology modeling and SAR analysis of Schistosoma japonicum cathepsin D (SjCD) with statin inhibitors identify a unique active site steric barrier with potential for the design of specific inhibitors
  7. Interpretation of the reactivity of peroxidase compound II with phenols and anilines using the Marcus equation
  8. P. falciparum pro-histoaspartic protease (proHAP) protein peptides bind specifically to erythrocytes and inhibit the invasion process in vitro
  9. The snake venom metalloproteases berythractivase and jararhagin activate endothelial cells
  10. Visualisation of transforming growth factor-β1, tissue kallikrein, and kinin and transforming growth factor-β receptors on human clear-cell renal carcinoma cells
  11. cDNA cloning and heterologous expression of a wheat proteinase inhibitor of subtilisin and chymotrypsin (WSCI) that interferes with digestive enzymes of insect pests
  12. Proteolytic susceptibility of the serine protease inhibitor trappin-2 (pre-elafin): evidence for tryptase-mediated generation of elafin
  13. Labelling of four distinct trophozoite falcipains of Plasmodium falciparum by a cystatin-derived probe
Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.037/html
Scroll to top button