Home Non-muscle α-actinin-4 interacts with plasminogen activator inhibitor type-1 (PAI-1)
Article
Licensed
Unlicensed Requires Authentication

Non-muscle α-actinin-4 interacts with plasminogen activator inhibitor type-1 (PAI-1)

  • Ulla Magdolen , Florian Schroeck , Sabine Creutzburg , Manfred Schmitt and Viktor Magdolen
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 385 Issue 9

Abstract

PAI-1 modulates many biological processes involving fibrinolysis, cell migration or tissue remodelling. In addition to inhibiting serine proteases (mainly tPA and uPA), PAI-1 interacts with vitronectin (Vn), fibrin or α(1)-acid glycoprotein, interactions which are important for PAI-1-mediated effects in inflammation, tumor invasion and metastasis. To further identify proteins interacting with PAI-1, the yeast two-hybrid strategy was employed. Screening of a human placenta cDNA library identified – in addition to the C-terminal region of cytokeratin 18 (CK18182-430) – a large C-terminal fragment of α-actinin-4 (Act-4) as a binding partner for PAI-1. Two different cDNA clones encoding Act-4287-911 and Act-4330-911, respectively, were isolated. An Act-4330-911/GST-fusion protein, but not GST alone, was immunoprecipitated together with active PAI-1. In solid phase binding assays, active wild-type PAI-1 as well as the PAI-1 variant Q123K (which does not interact with multimeric Vn) was found to bind to Act-4330-911/GST. Latent PAI-1, latent Q123K, and the inactive PAI-1 variant Q55P did not display any binding activity. Act-4 is mainly present intracellularly and is involved in cellular motility via interaction with the actin cytoskeleton, thus probably affecting the metastatic potential of tumor cells. However, an extracellular Act-4-derived fragment (mactinin) has previously been identified, which (i) is generated by proteolytic action of uPA, (ii) displays significant chemotactic activity for monocytes, and (iii) promotes monocyte/macrophage maturation. We suggest that PAI-1, via interaction with both Act-4 and uPA, may function as a modulator of this mononuclear phagocyte response, not only in inflammation but also in tumor invasion and metastasis.

:

References

Agaphonov, M.O., Romanova, N.V., Trushkina, P.M., Smirnov, V.N., and Ter-Avanesyan, M.D. (2002). Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum. BMC Mol. Biol.3, no. 15.10.1186/1471-2199-3-15Search in Google Scholar PubMed PubMed Central

Andreasen, P.A., Egelund, R., and Petersen, H.H. (2000). The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol. Life Sci.57, 25–40.10.1007/s000180050497Search in Google Scholar PubMed

Araki, N., Hatae, T., Yamada, T., and Hirohashi, S. J. (2000). Actinin-4 is preferentially involved in circular ruffling and macropinocytosis in mouse macrophages: analysis by fluorescence ratio imaging. J. Cell Sci.113, 3329–3340.10.1242/jcs.113.18.3329Search in Google Scholar PubMed

Arroyo de Prada, N., Schroeck, F., Sinner, E.-K., Muehlenweg, B., Twellmeyer, J., Sperl, S., Wilhelm, O.G., Schmitt, M., and Magdolen, V. (2002). Interaction of plasminogen activator inhibitor type-1 (PAI-1) with vitronectin: characterization of different PAI-1 mutants. Eur. J. Biochem.269, 184–192.10.1046/j.0014-2956.2002.02639.xSearch in Google Scholar PubMed

Binder, B.R., Christ, G., Gruber, F., Grubic, N., Hufnagl, P., Krebs, M., Mihaly, J., and Prager G.W. (2002). Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol. Sci.17, 56–61.10.1152/nips.01369.2001Search in Google Scholar PubMed

Boncela, J., Papiewska, I., Fijalkowska, I., Walkowiak, B., and Cierniewski, C.S. (2001). Acute phase protein alpha 1–acid glycoprotein interacts with plasminogen activator inhibitor type 1 and stabilizes its inhibitory activity. J. Biol. Chem.276, 35305–35311.10.1074/jbc.M104028200Search in Google Scholar PubMed

Brakebusch, C. and Fässler, R. (2003). The integrin-actin connection, an eternal love affair. EMBO J.22, 2324–2333.10.1093/emboj/cdg245Search in Google Scholar PubMed PubMed Central

Carrell, R.W., Evans, D.L., and Stein, P.E. (1991). Mobile reactive centre of serpins and the control of thrombosis. Nature353, 576–578.10.1038/353576a0Search in Google Scholar PubMed

Chazaud, B., Bonavaud, S., Plonquet, A., Pouchelet, M., Gherardi, R.K., and Barlovatz-Meimon, G. (2000). Involvement of the [PAR:uPA:PAI-1:LRP] complex in human myogenic cell motility. Exp. Cell Res.258, 237–244.10.1006/excr.2000.4934Search in Google Scholar PubMed

Deng, G., Curriden, S.A., Hu, G., Czekay, R.P., and Loskutoff, D.J. (2001). Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedin B domain of vitronectin. J. Cell Physiol.189, 23–33.10.1002/jcp.1133Search in Google Scholar PubMed

Dixson, J.D., Forstner, M.J., and Garcia, D.M. (2003). The α-actinin gene family: a revised classification. J. Mol. Evol.56, 1–10.10.1007/s00239-002-2374-5Search in Google Scholar PubMed

Ehrlich, H.J., Gebbink, R.K., Keijer, J., Linders, M., Preissner, K.T., and Pannekoek, H. (1990). Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J. Biol. Chem.265, 13029–13035.Search in Google Scholar

Gonias, S.L., Hembrough, T.A., and Sankovic, M. (2001). Cytokeratin 8 functions as a major plasminogen receptor in select epithelial and carcinoma cells. Front. Biosci.6, D1403–D1411.Search in Google Scholar

Goto, H., Wakui, H., Komatsuda, A., Ohtani, H., Imai, H., Sawada, K., and Kobayashi, R. (2003). Renal α-actinin-4: purification and puromycin aminonucleoside-binding property. Nephron Exp. Nephrol.93, 27–35.10.1159/000066647Search in Google Scholar PubMed

Honda, K., Yamada, T., Endo, R., Ino, Y., Gotoh, M., Tsuda, H., Yamada, Y., Chiba, H., and Hirohash, i.-S. (1998). Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J. Cell. Biol.140, 1383–1393.10.1083/jcb.140.6.1383Search in Google Scholar PubMed PubMed Central

Kaplan, J.M., Kim, S.H., North, K.N., Rennke, H., Correia, L.A., Tong, H.Q., Mathis, B.J., Rodriguez-Perez, J.C., Allen, P.G., Beggs, A.H., and Pollak, M.R. (2000). Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet.24, 251–256.10.1038/73456Search in Google Scholar PubMed

Kjøller, L. (2002). The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility. Biol. Chem.383, 5–19.10.1515/BC.2002.002Search in Google Scholar PubMed

Kjøller, L., Kanse, S.M., Kirkegard, T., Rodenburg, K.W., Ronne, E., Goodman, S.L., Preissner, K.T., Ossowski, L., and Andreasen, P.A. (1997). Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Exp. Cell Res.232, 420–429.10.1006/excr.1997.3540Search in Google Scholar PubMed

Knudsen, C.R., Jadidi, M., Friis, I., and Mansilla, F. (2002). Application of the yeast two-hybrid system in molecular gerontology. Biogerontology3, 243–256.10.1023/A:1016219121897Search in Google Scholar

Komatsuda, A., Wakui, H., Maki, N., Kigawa, A., Goto, H., Ohtani, H., Hamai, K., Oyama, Y., Makoto, H., Sawada, K., and Imai H (2003). Analysis of mutations in alpha-actinin 4 and podocin genes of patients with chronic renal failure due to sporadic focal segmental glomerulosclerosis. Ren. Fail.25, 87–93.10.1081/JDI-120017471Search in Google Scholar

Kos, C.H., Le, T.C., Sinha, S., Henderson, J.M., Kim, S.H., Sugimoto, H., Kalluri, R., Gerszten, R.E., and Pollak, M.R. (2003). Mice deficient in α-actinin-4 have severe glomerular disease. J. Clin. Invest.111, 1683–1690.10.1172/JCI17988Search in Google Scholar PubMed PubMed Central

Ku, N.O., Darling, J.M., Krams, S.M., Esquivel, C.O., Keeffe, E.B., Sibley, R.K., Lee, Y.M., Wright, T.L. and Omary, M.B. (2003). Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies. Proc. Natl. Acad. Sci. USA100, 6063–6068.10.1073/pnas.0936165100Search in Google Scholar PubMed PubMed Central

Lawrence, D.A., Berkenpas, M.B., Palaniappan, S., and Ginsburg, D. (1994). Localization of vitronectin binding domain in plasminogen activator inhibitor-1. J. Biol. Chem.269, 15223–15228.10.1016/S0021-9258(17)36595-XSearch in Google Scholar

Luikart, S., Wahl, D., Hinkel, T., Masri, M., and Oegema, T. (1999). A fragment of α-actinin promotes monocyte/macrophage maturation in vitro. Exp. Hematol.27, 337–344.10.1016/S0301-472X(98)00020-4Search in Google Scholar

Luikart, S.D., Masri, M., Wahl, D., Hinkel, T., Beck, J.M., Gyetko, M.R., Gupta, P., and Oegema, T. (2002). Urokinase is required for the formation of mactinin, an α-actinin fragment that promotes monocyte/macrophage maturation. Biochim. Biophys. Acta1591, 99–107.10.1016/S0167-4889(02)00255-0Search in Google Scholar

Luikart, S.D., Krug, H.E., Nelson, R.D., Hinkel, T., Majeski, P., Gupta, P., Mahowald, M.L., and Oegema, T. (2003). Mactinin: a modulator of the monocyte response to inflammation. Arthritis Res. Ther.5, R310–R316.10.1186/ar799Search in Google Scholar

Mahdi, F., Shariat-Madar, Z., Todd, R.F., Figueroa, C.D., and Schmaier, A.H. (2001). Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells. Blood97, 2342–2350.10.1182/blood.V97.8.2342Search in Google Scholar

Masri, M., Wahl, D., Oegema, T., and Luikart, S. (1999). HL-60 cells degrade α-actinin to produce a fragment that promotes monocyte/macrophage maturation. Exp. Hematol.27, 345–3520.10.1016/S0301-472X(98)00021-6Search in Google Scholar

Minor, K.H. and Peterson, C.B. (2002). Plasminogen activator inhibitor type 1 promotes the self-association of vitronectin into complexes exhibiting altered incorporation into the extracellular matrix. J. Biol. Chem.277, 10337–10345.10.1074/jbc.M109564200Search in Google Scholar

Nikolopoulos, S.N., Spengler, B.A., Kisselbach, K., Evans, A.E., Biedler, J.L., Ross, R.A. (2000). The human non-muscle α-actinin protein encoded by the ACTN4 gene suppresses tumorigenicity of human neuroblastoma cells. Oncogene19, 380–386.10.1038/sj.onc.1203310Search in Google Scholar

Schroeck, F., Arroyo de Prada, N., Sperl, S., Schmitt, M., and Magdolen, V. (2002). Interaction of plasminogen activator inhibitor type-1 (PAI-1) with vitronectin (Vn): mapping the binding sites on PAI-1 and Vn. Biol. Chem.383, 1143–1149.10.1515/BC.2002.125Search in Google Scholar

Uetz, P. and Hughes, R.E. (2000). Systematic and large-scale two-hybrid screens. Curr. Opin. Microbiol.3, 303–308.10.1016/S1369-5274(00)00094-1Search in Google Scholar

van Criekinge, W. and Beyaert, R. (1999). Yeast two-hybrid: state of the art. Biol. Proc. Online2, 1–38.10.1251/bpo16Search in Google Scholar PubMed PubMed Central

Wells, M.J., Hatton, M.W., Hewlett, B., Podor, T.J., Sheffield, W.P., and Blajchman, M.A. (1997). Cytokeratin 18 is expressed on the hepatocyte plasma membrane surface and interacts with thrombin-antithrombin complexes. J. Biol. Chem.272, 28574–28581.10.1074/jbc.272.45.28574Search in Google Scholar PubMed

Published Online: 2005-06-01
Published in Print: 2004-09-01

© Walter de Gruyter

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2004.105/html
Scroll to top button