Chapter
Licensed
Unlicensed
Requires Authentication
Index
-
VladVE Vicol
, Nader Masmoudi and Matthew Novack
You are currently not able to access this content.
You are currently not able to access this content.
Chapters in this book
- Frontmatter i
- Contents v
-
1. Introduction
- 1.1 Context and motivation 1
- 1.2 Ideas and difficulties 6
- 1.3 Organization of the book 8
- 1.4 Acknowledgments 9
-
2. Outline of the convex integration scheme
- 2.1 A Guide to the Parameters 11
- 2.2 Inductive Assumptions 14
- 2.3 Intermittent Pipe Flows 14
- 2.4 Higher Order Stresses 17
- 2.5 Cutoff Functions 22
- 2.6 The Perturbation 27
- 2.7 The Reynolds Stress Error and Heuristic Estimates 29
-
3. Inductive Assumptions
- 3.1 General Notations 37
- 3.2 Inductive Estimates 39
- 3.3 Main Inductive Proposition 44
- 3.4 Proof of Theorem 1.1 44
-
4. Building Blocks
- 4.1 A Careful Construction of Intermittent Pipe Flows 49
- 4.2 Deformed Pipe Flows and Curved Axes 57
- 4.3 Placements Via Relative Intermittency 59
- 5. Mollification 67
-
6. Cutoffs
- 6.1 Definition of the Velocity Cutoff Functions 83
- 6.2 Properties of the Velocity Cutoff Functions 87
- 6.3 Definition of the Temporal Cutoff Functions 115
- 6.4 Estimates on Flow Maps 117
- 6.5 Stress Estimates on the Support of the New Velocity Cutoff Functions 121
- 6.6 Definition of the Stress Cutoff Functions 123
- 6.7 Properties of the Stress Cutoff Functions 124
- 6.8 Definition and Properties of the Checkerboard Cutoff Functions 131
- 6.9 Definition of the Cumulative Cutoff Function 133
-
7. From q to q + 1: Breaking Down the Main Inductive Estimates
- 7.1 Induction on Q 135
- 7.2 Notations 136
- 7.3 Induction on ñ 138
-
8. Proving the Main Inductive Estimates
- 8. 1 Definition of R̊q, n̄, p̄ and Wq+1, n̄, p̄ 143
- 8. 2 Estimates For Wq+1, n̄, p̄ 147
- 8.3 Identification of Error Terms 152
- 8.4 Transport Errors 168
- 8.5 Nash Errors 171
- 8.6 Type 1 Oscillation Errors 172
- 8.7 Type 2 Oscillation Errors 180
- 8.8 Divergence Corrector Errors 189
- 8.9 Time Support of Perturbations and Stresses 191
-
9. Parameters
- 9.1 Definitions and Hierarchy of the Parameters 193
- 9.2 Definitions of the Q-Dependent Parameters 196
- 9.3 Inequalities and Consequences of the Parameter Definitions 198
- 9.4 Mollifiers and Fourier Projectors 203
- 9.5 Notations 204
-
Appendix A: Useful Lemmas
- Introduction 205
- A.1 Transport Estimates 206
- A.2 Proof of Lemma 6.2 206
- A.3 Lp Decorrelation 209
- A.4 Sobolev Inequality with Cutoffs 209
- A.5 Consequences of the Faà di Bruno Formula 211
- A.6 Bounds for Sums and Iterates of Operators 217
- A.7 Commutators with Material Derivatives 221
- A.8 Intermittency-Friendly Inversion of the Divergence 226
- Bibliography 239
- Index 245
Chapters in this book
- Frontmatter i
- Contents v
-
1. Introduction
- 1.1 Context and motivation 1
- 1.2 Ideas and difficulties 6
- 1.3 Organization of the book 8
- 1.4 Acknowledgments 9
-
2. Outline of the convex integration scheme
- 2.1 A Guide to the Parameters 11
- 2.2 Inductive Assumptions 14
- 2.3 Intermittent Pipe Flows 14
- 2.4 Higher Order Stresses 17
- 2.5 Cutoff Functions 22
- 2.6 The Perturbation 27
- 2.7 The Reynolds Stress Error and Heuristic Estimates 29
-
3. Inductive Assumptions
- 3.1 General Notations 37
- 3.2 Inductive Estimates 39
- 3.3 Main Inductive Proposition 44
- 3.4 Proof of Theorem 1.1 44
-
4. Building Blocks
- 4.1 A Careful Construction of Intermittent Pipe Flows 49
- 4.2 Deformed Pipe Flows and Curved Axes 57
- 4.3 Placements Via Relative Intermittency 59
- 5. Mollification 67
-
6. Cutoffs
- 6.1 Definition of the Velocity Cutoff Functions 83
- 6.2 Properties of the Velocity Cutoff Functions 87
- 6.3 Definition of the Temporal Cutoff Functions 115
- 6.4 Estimates on Flow Maps 117
- 6.5 Stress Estimates on the Support of the New Velocity Cutoff Functions 121
- 6.6 Definition of the Stress Cutoff Functions 123
- 6.7 Properties of the Stress Cutoff Functions 124
- 6.8 Definition and Properties of the Checkerboard Cutoff Functions 131
- 6.9 Definition of the Cumulative Cutoff Function 133
-
7. From q to q + 1: Breaking Down the Main Inductive Estimates
- 7.1 Induction on Q 135
- 7.2 Notations 136
- 7.3 Induction on ñ 138
-
8. Proving the Main Inductive Estimates
- 8. 1 Definition of R̊q, n̄, p̄ and Wq+1, n̄, p̄ 143
- 8. 2 Estimates For Wq+1, n̄, p̄ 147
- 8.3 Identification of Error Terms 152
- 8.4 Transport Errors 168
- 8.5 Nash Errors 171
- 8.6 Type 1 Oscillation Errors 172
- 8.7 Type 2 Oscillation Errors 180
- 8.8 Divergence Corrector Errors 189
- 8.9 Time Support of Perturbations and Stresses 191
-
9. Parameters
- 9.1 Definitions and Hierarchy of the Parameters 193
- 9.2 Definitions of the Q-Dependent Parameters 196
- 9.3 Inequalities and Consequences of the Parameter Definitions 198
- 9.4 Mollifiers and Fourier Projectors 203
- 9.5 Notations 204
-
Appendix A: Useful Lemmas
- Introduction 205
- A.1 Transport Estimates 206
- A.2 Proof of Lemma 6.2 206
- A.3 Lp Decorrelation 209
- A.4 Sobolev Inequality with Cutoffs 209
- A.5 Consequences of the Faà di Bruno Formula 211
- A.6 Bounds for Sums and Iterates of Operators 217
- A.7 Commutators with Material Derivatives 221
- A.8 Intermittency-Friendly Inversion of the Divergence 226
- Bibliography 239
- Index 245