Home The protective mechanism of the native rust layer on Cr-containing steels exposed to marine atmosphere
Article
Licensed
Unlicensed Requires Authentication

The protective mechanism of the native rust layer on Cr-containing steels exposed to marine atmosphere

  • Q. C. Zhang EMAIL logo , J. S. Wu , W. L. Zheng , J. G. Chen and A. B. Li
Published/Copyright: January 3, 2022
Become an author with De Gruyter Brill

Abstract

Cr-containing steel panels have been exposed to marine atmosphere for 2 years. The phase constituents and the microstructure of the rust layer have been characterized using scanning electron microscopy (SEM), electron probe micro-analyzer (EPMA), Raman spectroscopy, and transmission electron microscopy (TEM). Results show that there are many cracks and pores in the rust layer on the surface of mild steel exposed for 2 years, resulting in a higher corrosion rate. But a compact rust layer with a phase constituent of alpha Cr substitute ferrite oxyhydroxide (α-CrxFe1 –xOOH) has been formed on weathering steel panels with a Cr content more than 2 mass% exposed for 2 years. Furthermore, ion selective measurements showed that the rust layer of α-CrxFe1– xOOH can suppress the penetration of corrosive anions, and accordingly weathering steel panels have a lower corrosion rate in the marine atmosphere.


Dr. Zhang Quan-cheng Materials Science & Engineering Department 1954 Huashan Road, Shanghai 200030, P. R. China Fax: +86 21 52 54 00 11

  1. This research were supported by the Science and Technology Society of Shanghai, China. Appreciation is expressed to P. F. Zhu of the Instrumental Analysis Center of Shanghai JiaoTong University for the use of the Raman spectroscope.

References

1 Yamamoto, M.; Kodama, T.: Bull. Iron Steel Inst. Japan. 4 (1999) 155.Search in Google Scholar

2 Nishimura, T.; Katayama, H.; Noda, K.; Kodama, T.: Corrosion Sci. 42 (2000) 1612.10.1016/S0010-938X(00)00018-4Search in Google Scholar

3 Evans, U.R.: Corrosion Sci. 9 (1969) 813.10.1016/S0010-938X(69)80074-0Search in Google Scholar

4 Misawa, T.; Hashimoto, K.; Shimodaira, S.: Corrosion Sci. 14 (1974) 131.10.1016/S0010-938X(74)80051-XSearch in Google Scholar

5 Dünnwald, J.; Otto,. A.: Corrosion Sci. 29 (1989) 1167.10.1016/0010-938X(89)90052-8Search in Google Scholar

6 Hou, W.T.; Liang, C.F.: J. Chinese Soc. Corr. & Prot. 20 (2000) 135.Search in Google Scholar

7 Perren, R.A.; Suter, T.A.; Uggowitzer, P.J.; Weber, L.; Magdowski, R.; Böhni, H.; Speidel, M.O.: Corrosion Sci. 43 (2001) 707.10.1016/S0010-938X(00)00087-1Search in Google Scholar

8 Deflorian, F.; Fedrizzi, L.; Rossi, S.: Progr. Org. Coat. 39 (2000) 9.10.1016/S0300-9440(00)00093-XSearch in Google Scholar

9 Zhang, Q.C.; Wu, J. S.; Chen, J.G.; Zheng, W.L.: Acta Metall. Sinica 37 (2001) 193.Search in Google Scholar

10 Stockbridge, C.D.; Sewell P.B.; Cohen, M.: J. Electrochem. Soc. 108 (1961) 928.10.1149/1.2427923Search in Google Scholar

11 Cohen, M.; Hashimoto, K.: J. Electrochem. Soc. 121 (1974) 42.10.1149/1.2396828Search in Google Scholar

12 Yamashita, M.; Miyuki, M.; Matsuda, Y.: Corrosion Sci. 38 (1994) 283.10.1016/0010-938X(94)90158-9Search in Google Scholar

Received: 2002-01-16
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0099/pdf
Scroll to top button