Abstract
The initial oxidation of polycrystalline α-Fe and ε-Fe2N1– x was investigated with X-ray photoelectron spectroscopy, ellipsometry and high-resolution transmission electron microscopy. Oxidation was performed at temperatures ranging from 300 to 600 K. The oxidation kinetics were described quantitatively with the coupled currents model according to Fromhold and Cook, adopting time-dependent work functions at the metal/oxide and oxide/oxygen interfaces. The evolution of the work functions of α-Fe could be related to the change of the oxide film composition, which evolved with increasing film thickness from approximately FeO to a composition close to Fe3O4. Upon oxidation of ε-Fe2N1– x, the N atoms accumulated underneath the oxide film, which could lead to an N concentration larger than the maximum equilibrium solubility of nitrogen in ε-Fe2N1 –x. This excess nitrogen hinders the oxidation and transport of Fe atoms and is associated with a negative charge, which led to a slower initial oxidation. Upon prolonged oxidation, the oxidation rate of ε-Fe2N1 –x could be related to the presence of an Fe1 –dO-like oxide or oxynitride in the oxide film.
Abstract
Die Anfangsstadien der Oxidation von polykristallinem α-Fe und ε-Fe2N1 –x wurden mit Röntgenfotoelektronenspektroskopie, Ellipsometrie und Hochauflösungstransmissionselektronenmikroskopie untersucht. Die Oxidations-experimente wurden bei Temperaturen von 300 bis 600 K durchgeführt. Die Oxidationskinetik konnte mit dem Modell von Fromhold und Cook quantitativ beschrieben werden. Dabei wurden zeitabhängige Austrittsarbeiten an den Metall/Oxid und Oxid/Sauerstoff-Grenzflächen angenommen. Die Entwicklung der Austrittsarbeiten von α-Fe wurde mit der Ånderung der Oxidschichtzusammensetzung in Zusammenhang gebracht. Die Oberflächenzusammensetzung änderte sich mit zunehmender Schichtdicke von FeO zu Fe3O4. Während der Oxidation von ε-Fe2N1 –x häuften sich N-Atome unterhalb der Oxidschicht an. Die N-Konzentration von ε-Fe2N1 –x konnte damit die maximale Gleichgewichtslöslichkeit von Stickstoff im ε-Fe2N1– x überschreiten. Dieser Überschussstickstoff behindert die Oxidation und den Transport von Fe-Atomen und ihm wurde eine negative Ladung zugeordnet. Diese Effekte führten zu einer langsameren Anfangsoxidation. Bei längerer Oxidationszeit konnte die Oxidationsgeschwindigkeit von ε-Fe2N1– x mit der Anwesenheit eines Fe1–δO-ähnlichen Oxids oder Oxynitrids in der Oxidschicht erklärt werden.
References
1 Hanaman, F.: Ph. D. Thesis, TU Berlin (1913).Search in Google Scholar
2 Uhlig, H.H.: Trans. Am. Soc. Met. 30 (1942) 947.Search in Google Scholar
3 Streicher, M.A.: J. Electrochem. Soc. 103 (1956) 375.10.1149/1.2430359Search in Google Scholar
4 Steensland, O.: Iron and Steel 42 (1969) 104.Search in Google Scholar
5 Bell, T.: Heat Treat. Met. 2 (1975) 39.Search in Google Scholar
6 Hendry, A.: Corros. Sci. 18 (1978) 555.10.1016/S0010-938X(78)80029-8Search in Google Scholar
7 Sachs, K.; Clayton, D.B.: Heat Treat. Met. 6 (1979) 29.Search in Google Scholar
8 Ronay, M.: Metall. Trans. A 12 (1981) 1951.10.1007/BF02643808Search in Google Scholar
9 Lu, Y.C.; Bandy, R.; Clayton, C.R.; Newman, R.C.: J. Electrochem. Soc. 130 (1983) 1774.10.1149/1.2120091Search in Google Scholar
10 Mittemeijer, E.J.: J. Heat Treating 3 (1983) 114.10.1007/BF02833081Search in Google Scholar
11 De Benedetti, B.; Angilini, E., in: Niku-Lari (ed.), Advances in Surface Treatments, Vol. 5, Pergamon Press, Oxford (1987) 3.10.1016/B978-0-08-034923-7.50010-3Search in Google Scholar
12 Alonso, F.; Arizaga, A.; Garcia, A.; Oñate, K.I.: Surf. Coat. Technol. 66 (1994) 291.10.1016/0257-8972(94)90015-9Search in Google Scholar
13 Weber, T.; DeWit, L.; Saris, F.W.; Königer, A.; Rauschenbach, B.; Wolf, G.K.; Krauss, S.: Mater. Sci. Eng. A 199 (1995) 205.10.1016/0921-5093(94)09729-1Search in Google Scholar
14 Mittemeijer, E.J.; Colijn, P.F.: Härterei-Tech. Mitt. 40 (1985) 77.Search in Google Scholar
15 Cocke, D.L.; Jurcik-Rajman, M.; Verprek, S.: J. Electrochem. Soc. 136 (1989) 3655.10.1149/1.2096526Search in Google Scholar
16 Brusic, V.; Frankel, G.S.; Rush, B.M.; Schrott, A.G.; Jahnes, C.; Russak, M.A.; Petersen, T.: J. Electrochem. Soc. 139 (1992) 1530.10.1149/1.2069450Search in Google Scholar
17 Karim Khani, M.; Dengel, D.: Metall. Mater. Trans. A 27 (1996) 1333.10.1007/BF02649870Search in Google Scholar
18 Kunst, H.: Härterei-Tech. Mitt. 33 (1978) 21.Search in Google Scholar
19 Wahl, G.: Fachbereich Hüttenpraxis Metallweiterverarbeitung 19 (1981) 1076.Search in Google Scholar
20 Werner, G.; Ziese, J.: Härterei-Tech. Mitt. 39 (1984) 156.Search in Google Scholar
21 Dawes, C.; Tranter, D.F.: Heat Treat. Met. 12 (1985) 70.Search in Google Scholar
22 Ebersbach, U.; Friedrich, S.; Nghia, T.; Spies, H.J.: Härterei-Tech. Mitt. 46 (1991) 339.Search in Google Scholar
23 Graat, P.C.J.; Somers, M.A.J.: Applied Surf. Sci. 100/101 (1996) 36.10.1016/0169-4332(96)00252-8Search in Google Scholar
24 Graat, P.C.J.; Brongers, M.P.H.; Zandbergen, H.W.; Somers, M.A.J.; Mittemeijer, E.J., in: S.B. Newcomb, J.A. Little (eds.), Microscopy of Oxidation 3, The Institute of Materials, London (1996) 503.Search in Google Scholar
25 Graat, P.C.J.; Somers, M.A.J.; Vredenberg, A.M.; Mittemeijer, E.J.: J. Appl. Phys. 82 (1997) 1416.10.1063/1.365919Search in Google Scholar
26 Graat, P.C.J.; Somers, M.A.J.: Surf. Interface Anal. 26 (1998) 773.10.1002/(SICI)1096-9918(199810)26:11<773::AID-SIA419>3.0.CO;2-#Search in Google Scholar
27 Graat, P.C.J.; Somers, M.A.J.; Mittemeijer, E.J.: Appl. Surf. Sci. 136 (1998) 238.10.1016/S0169-4332(98)00345-6Search in Google Scholar
28 Graat, P.C.J.; Somers, M.A.J.; Mittemeijer, E.J.: Thin Solid Films 340 (1999) 87.10.1016/S0040-6090(98)01353-4Search in Google Scholar
29 Graat, P.C.J.; Somers, M.A.J.; Mittemeijer, E.J.: Thin Solid Films 353 (1999) 72.10.1016/S0040-6090(99)00377-6Search in Google Scholar
30 Graat, P.C.J.; Zandbergen, H.W.; Somers, M.A.J.; Mittemeijer, E.J.: Oxid. Met. 53 (2000) 221.10.1023/A:1004547100725Search in Google Scholar
31 Fromhold, A.T.; Cook, L.: Phys. Rev. 158 (1967) 600.10.1103/PhysRev.158.600Search in Google Scholar
32 Fromhold, A.T.; Cook, L.: Phys. Rev. 163 (1967) 650.10.1103/PhysRev.163.650Search in Google Scholar
33 Fromhold, A.T.: Theory of Metal Oxidation, Vol. I: Fundamentals, North-Holland, Amsterdam (1976).Search in Google Scholar
34 Fromhold, A.T.; Cook, L.: J. Appl. Phys. 38 (1967) 1546.10.1063/1.1709721Search in Google Scholar
35 Simmons, J.G.: J. Appl. Phys. 34 (1963) 2581.10.1063/1.1729774Search in Google Scholar
36 Stratton, R.: J. Phys. Chem. Solids 23 (1962) 1177.10.1016/0022-3697(62)90165-8Search in Google Scholar
37 Leibbrandt, G.W.R.; Hoogers, G.; Habraken, F.H.P.M.: Phys. Rev. Lett. 68 (1992) 1947.10.1103/PhysRevLett.68.1947Search in Google Scholar
38 Roosendaal, S.J.; Van Asselen, B.; Elsenaar, J.W.; Vredenberg, A.M.; Habraken, F.H.P.M.: Surf. Sci. 442 (1999) 329.10.1016/S0039-6028(99)01006-7Search in Google Scholar
39 Massalski, T.B. (Editor-in-Chief): Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, Ohio (1990) 1728.Search in Google Scholar
40 Schubert, T.; Oettel, H.; Bergner, D.: Härterei-Tech. Mitt. 42 (1987) 332.Search in Google Scholar
41 Somers, M.A.J.; Mittemeijer, E.J.: Metall. Trans. A 21 (1990) 901.10.1007/BF02656574Search in Google Scholar
42 Somers, M.A.J.; Kooi, B.J.; Sloof, W.G.; Mittemeijer, E.J.: Surf. Interface Anal. 19 (1991) 633.10.1002/sia.7401901118Search in Google Scholar
43 Kooi, B.J.; Somers, M.A.J.; Mittemeijer, E.J.: Thin Solid Films 281/282 (1996) 488.10.1016/0040-6090(96)08682-8Search in Google Scholar
44 Jutte, R.H.; Kooi, B.J.; Somers, M.A.J.; Mittemeijer, E.J.: Oxid. Met. 48 (1997) 87.10.1007/BF01675263Search in Google Scholar
45 Smeltzer, W.W.; Young, D.J.: Progr. Solid-State Chem. 10 (1975) 17.10.1016/0079-6786(75)90003-5Search in Google Scholar
46 Atkinson, A.; O’Dwyer, M.L.; Taylor, R.I.: J. Mater. Sci. 18 (1983) 2371.10.1007/BF00541841Search in Google Scholar
47 Voogt, F.C.; Hibma, T.; Smulders, P.; Niesen, L.: J. Crystal Growth 174 (1997) 440.10.1016/S0022-0248(96)01140-2Search in Google Scholar
© 2002 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- Mechanical properties of Cu/In – 48 Sn/Cu diffusion-soldered joints
- Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots
- Computer simulation of the long-range diffusional transformation based on the postulated principle of maximum dissipation rate of Gibbs energy
- Kinetics of growth of intermetallics in the Cu–Sn system
- Atomic composition of the metastable β″ phase precipitate in an Al –Mg–Si alloy
- Interfacial tension of metastable immiscible alloys: a novel measurement concept
- On the kinetics of the initial oxidation of iron and iron nitride
- Synthesis and characterisation of MgAlON
- Kinetic studies of oxidation of MgAlON and a comparison of the oxidation behaviour of AlON, MgAlON, O’SiAlON–ZrO2, and BN–ZCM ceramics
- Study on warm rolling of AISI 1015 carbon steel
- Experimental study on elastic modulus and damping capacity of woodceramics
- Texture development during cold rolling of unidirectionally solidified Al–Al3Ni alloy
- Wear behavior of A356/M7C3 and A356/SiC particulate metal matrix composites
- Microstructural characterization and microhardness of rapidly solidified Al –Ce alloys
- Effect of quenching rate on the microstructure of rapidly solidified Al –Sr alloys
- The protective mechanism of the native rust layer on Cr-containing steels exposed to marine atmosphere
- Notifications/Mitteilungen
- Personen
- DGM conferences
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- Mechanical properties of Cu/In – 48 Sn/Cu diffusion-soldered joints
- Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots
- Computer simulation of the long-range diffusional transformation based on the postulated principle of maximum dissipation rate of Gibbs energy
- Kinetics of growth of intermetallics in the Cu–Sn system
- Atomic composition of the metastable β″ phase precipitate in an Al –Mg–Si alloy
- Interfacial tension of metastable immiscible alloys: a novel measurement concept
- On the kinetics of the initial oxidation of iron and iron nitride
- Synthesis and characterisation of MgAlON
- Kinetic studies of oxidation of MgAlON and a comparison of the oxidation behaviour of AlON, MgAlON, O’SiAlON–ZrO2, and BN–ZCM ceramics
- Study on warm rolling of AISI 1015 carbon steel
- Experimental study on elastic modulus and damping capacity of woodceramics
- Texture development during cold rolling of unidirectionally solidified Al–Al3Ni alloy
- Wear behavior of A356/M7C3 and A356/SiC particulate metal matrix composites
- Microstructural characterization and microhardness of rapidly solidified Al –Ce alloys
- Effect of quenching rate on the microstructure of rapidly solidified Al –Sr alloys
- The protective mechanism of the native rust layer on Cr-containing steels exposed to marine atmosphere
- Notifications/Mitteilungen
- Personen
- DGM conferences