Abstract
The magnetic properties of as-plated and heat-treated Ni – Fe –P and Ni –Fe –P–B films were investigated as a basis for developing new functional thin films. The amorphous Ni –Fe –P and Ni –Fe –P–B and crystalline Ni –Fe –P–B films were prepared by simply controlling the NaH2PO2 concentration in the bath. The structure of all Ni –Fe –P films, prepared in an NaH2PO2 concentration range of 18– 48 g/l, was amorphous, while the NaH2PO2 concentration for the formation of amorphous Ni –Fe –P–B films ranged from 23 to 38 g/l. The increase of the Fe content is thought to be the reason for the increase in the atomic magnetic moment, and thus results in an increase in the saturation magnetization (Ms). The amorphous Ni –Fe –P films possess superior coercivity (Hc). Similar behavior can also be seen in the case of Ni –Fe –P–B films. The lower squarenesses of as-plated films, compared with those of annealed films, implies that the as-deposited films are inhomogenous. As the films were heated up to 400 °C, the homogeneity was obviously improved, and Ms decreased and Hc increased continuously for all the alloy films.
References
1 Schmeckenbecher, A.F.: J. Electrochem. Soc. 113 (1966) 778.10.1149/1.2424118Search in Google Scholar
2 Schmeckenbecher, A.F.: Plat. Surf. Fin. 58 (1971) 58.Search in Google Scholar
3 Aoki, K.; Ishibashi, S.: J. Met. Fin. Japan 21 (1970) 622.Search in Google Scholar
4 Aoki, K.; Ishibashi, S.; J. Met. Fin. Japan 22 (1971) 66.Search in Google Scholar
5 Matsuda, H.; Takano, O.: J. Met. Fin. Japan 38 (1987) 429.Search in Google Scholar
6 Kim, D.H.; Matsuda, H.; Aoki, K.; Takano, O.: J. Surf. Fin. Japan 45 (1994) 202.Search in Google Scholar
7 Matsubara, H.; Mizutani, H.; Mitamura, S.; Osaka, T.: Trans. IEEE. Magn. 26 (1990) 1210.10.1109/20.54000Search in Google Scholar
8 Osaka, T.; Homma, T.; Noda, K.; Watanabe, T.; Goto, F.: Trans. IEEE. Magn. 27 (1991) 4963.10.1109/20.278708Search in Google Scholar
9 Matsuoka, M.; Hayashi, T.: Plat. Surf. Fin. 69 (1982) 53.Search in Google Scholar
10 Hotta, S.; Sugano, M.; Honma, H.: J. Surf. Fin. Japan 44 (1993) 217.Search in Google Scholar
11 Schwartz, M.; Mallory, G.O.: J. Electrochem. Soc. 123 (1976) 606.10.1149/1.2132894Search in Google Scholar
12 Zhang, B.W.; Yi, G.: J. Phys.: Condens. Mater. 8 (1996) 5451.Search in Google Scholar
13 O’Handley, R.C.; Hasegawa, R.; Ray, R.; Chou, C.P.: Appl. Phys. Lett. 29 (1976) 330.10.1063/1.89085Search in Google Scholar
14 Nafis, S.; Hadjipanayis, G.C.; Sorensen, C.M.: J. Appl. Phys. 67 (1990) 4478.10.1063/1.344887Search in Google Scholar
15 Wang, L.L.; Zhao, L.H.; Huang, G.F.; Yuan, X.J.; Zhang, B.W.; Zhang, J.Y.: Surf. Coat. Tech. 105 (2000) 102.Search in Google Scholar
16 Kim, D.; Matsuda, H.; Aoki, K.; Takano, O.: Plat. Surf. Fin. 83 (1996) 35.Search in Google Scholar
17 Ruscior, C.; Croiala, E.: J. Electrochem. Soc. 118 (1997) 696.10.1149/1.2408146Search in Google Scholar
18 Mital, C.K.; Shrivastava, P.B.: Metal Fin. 84 (1986) 67.Search in Google Scholar
19 Zhang, B.W.; Hu, W.Y.; Zhu, D.Q.: Physica B, 183 (1993) 205.10.1016/0921-4526(93)90074-GSearch in Google Scholar
20 Wang, L.L.; Zhao, L.H.; Zhang, B.W.; Hu, W.Y.; Shu, X.L.; Sheng, X.: Z. Metallkd. 90 (1999) 321.Search in Google Scholar
21 Koiwa, I.; Usuda, M.; Yamada, K.; Osaka, T.: J. Electrochem. Soc. 135 (1988) 718.10.1149/1.2095730Search in Google Scholar
22 Hatta, S.; Egami, T.; Jr. Graham, C.D., in: B. Cantor (ed.), Proc. 3rd Int. Conf. on Rapidly Quenched Metals, Metals Society, London 2 (1978) 183.Search in Google Scholar
© 2002 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- 59Fe Grain boundary diffusion in nanostructured γ-Fe–Ni
- 59Fe Grain boundary diffusion in nanostructured γ-Fe–Ni
- Thermodynamic assessment of the Cu–Ti system taking into account the new stable phase CuTi3
- Thermodynamic assessment of the Pd–Sc system
- Heat content of liquid Fe –Cu–Si alloys formed in the melting treatment process of domestic waste incineration residue
- A model of viscosity for liquid metals
- Umwandlungswärme einer NiTi-Gedächtnislegierung unter Last
- Study of magnetic properties of Ni –Fe –P and Ni –Fe –P–B chemical films
- Geometrical modelling of a crystal grain in a weld of ferritic stainless steel
- Welding of heat-resistant 20% Cr – 5% Al steels
- Finite element analysis of γ′ directional coarsening in Ni-based superalloys
- Quantitative analysis of aluminium alloys using SIMS
- Effect of the particle size on the mechanical properties of 60 vol.% SiCp reinforced Al matrix composites
- Notifications/Mitteilungen
- Personal/Personelles
Articles in the same Issue
- Frontmatter
- Articles/Aufsätze
- 59Fe Grain boundary diffusion in nanostructured γ-Fe–Ni
- 59Fe Grain boundary diffusion in nanostructured γ-Fe–Ni
- Thermodynamic assessment of the Cu–Ti system taking into account the new stable phase CuTi3
- Thermodynamic assessment of the Pd–Sc system
- Heat content of liquid Fe –Cu–Si alloys formed in the melting treatment process of domestic waste incineration residue
- A model of viscosity for liquid metals
- Umwandlungswärme einer NiTi-Gedächtnislegierung unter Last
- Study of magnetic properties of Ni –Fe –P and Ni –Fe –P–B chemical films
- Geometrical modelling of a crystal grain in a weld of ferritic stainless steel
- Welding of heat-resistant 20% Cr – 5% Al steels
- Finite element analysis of γ′ directional coarsening in Ni-based superalloys
- Quantitative analysis of aluminium alloys using SIMS
- Effect of the particle size on the mechanical properties of 60 vol.% SiCp reinforced Al matrix composites
- Notifications/Mitteilungen
- Personal/Personelles