Home Crystallization of As-quenched and Hydrogenated CU50Ti40Al10 Amorphous Alloy
Article
Licensed
Unlicensed Requires Authentication

Crystallization of As-quenched and Hydrogenated CU50Ti40Al10 Amorphous Alloy

  • Tony Spassov , G. Stergioudis , G. Ivanov and E.K. Polychroniadis
Published/Copyright: December 14, 2021
Become an author with De Gruyter Brill

Abstract

The influence of hydrogen on the crystallization of meltspun Cu50Ti40Al10 amorphous alloy was studied by DSC, TEM, X-ray and electron diffraction. The isothermal crystallization kinetics of the as-quenched glass revealed that the most probable crystallization mechanism is nucleation and subsequent three dimensional diffusion controlled growth. A strong influence of hydrogen on the crystallization of this amorphous alloy was found. Hydrogenation leads to drastic decreasing of the thermal stability, due to phase separation in the amorphous state and to formation of nanocrystalline structure during crystallization. The activation energy of the nanocrystallization reaction was determined by the Kissinger method.


T. Spassov, G. Ivanov University of Sofia Department of Chemistry 1 James Bourdier Str. 1126 Sofia Bulgaria
G. Stergioudis, E.K. Polychroniadis University of Thessaloniki Department of Physics Thessaloniki Greece

  1. One of the authors, T. Spassov, would like to thank Prof. U. Koester (Dortmund) for the condition provided to produce the amorphous specimens. Part of this work has been supported by the DAAD (Germany).

Literature

1 Myung, W.N.; Battezzati, L.; Baricco, M.; Aoki, K; Inoue, A.; Masumoto, T.: Mater. Sci. Engn. A179/A180 (1994) 371–37510.1016/0921-5093(94)90229-1Search in Google Scholar

2 Dunlap, R.A.; Stroink, G.; Stadnik, Z.M.; Dini, K.: Mater. Sci. Engn. 99 (1988) 543–54610.1016/0025-5416(88)90394-1Search in Google Scholar

3 Yamada, M.; Matsui, N.; Kamiya, N.; Miyazaki, K.; Tanaka, K.: Mater. Trans. JIM 35 (1994) 1–610.2320/matertrans1989.35.1Search in Google Scholar

4 Battezzati, L.; Baricco, M.; Riontino, G.; Soletta, I.: J. Phys. (Paris), Colloq. C4 51 (1990) 79Search in Google Scholar

5 Koester, U.; Meinhardt, J.; Aronin, A.; Birol, Y.: Z. Metallkd. 86 (1995) 171–175.Search in Google Scholar

6 Hwang, C.H.; Kang, S.; Cho, K.; Kawamura, K.: Scripta Metall. 19 (1985) 1403–1408.10.1016/0036-9748(85)90140-1Search in Google Scholar

7 Dini, K.; Dunlap, R.: J. Phys. F: Met. Phys. 15 (1985) 273–277.10.1088/0305-4608/15/2/005Search in Google Scholar

8 Cho, K.; Hwang, H.C.; Pak, C.; Ryeom, Y.: J. Less-Comm. Metals 89 (1983) 223–228.10.1016/0022-5088(83)90272-2Search in Google Scholar

9 Menzel, D.; Niklas, A.; Koester, U.: Mater. Sci. Eng. A133 (1991) 312–315.10.1016/0921-5093(91)90076-YSearch in Google Scholar

10 Spassov, T.; Tzolova, G.: Cryst. Res. Technol. 29 (1994) 99–107.10.1002/crat.2170290123Search in Google Scholar

11 Avrami, M.: J. Chem. Phys. 7 (1939) 1103.10.1063/1.1750380Search in Google Scholar

12 Aoki, K.; Masumoto, T.; Kamachi, M.: J. Less-Comm. Metals 113 (1985) 33–41.10.1016/0022-5088(85)90145-6Search in Google Scholar

Received: 1997-05-05
Published Online: 2021-12-14

© 1998 Carl Hanser Verlag, München

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1998-0004/html
Scroll to top button