Phases and Phase Equilibria in the Quaternary System Ti –Cu–Al –N at 850 °C
-
Nuri Durlu
Abstract
Phase equilibria in the quaternary system Ti–Cu –Al –N are investigated using XRD, metallography and EDX, yielding the observation of 18 four phase spaces of the 850 °C isotherm. In the ternary boundary systems Ti– Cu–Al and Ti –Al –N, all previously reported phases are confirmed, but several tielines are newly determined. In the system Ti–N, the new ternary phase Ti3CuN dominates most phase fields. Based on thermochemical data of the binary boundary systems and the newly investigated or reinvestigated phase equilibria of the ternary boundary systems, a set of Gibbs energies for the solid phases occuring in the quaternary system is derived, which is used in combination with the quaternary experimental data to derive a large section of the isotherm for Ti –Cu –Al –N at 850 °C. The quaternary g-phase (Ti, Cu, Al)6N having the composition Ti3Cu2Al1N0.8 is found to be the only stable quaternary phase of this system. Several η-phases isotypic to Ti3Cu2Al1N0.8 are synthesized to explore the crystal chemistry effects of substitutions on different crystallographic sites.
Literatur
1 COST507 – Thermodynamic Database for Light Metal Alloys, Version Jan. 1995.Search in Google Scholar
2 Schuster, J. C.; Durlu, N.: in: H. Krappitz, H. A. Schaeffer (eds.), Joining Ceramics, Glass and Metal, Deutsche Glastechn. Ges. e.V., Frankfurt/Main, 1993, 22–27.Search in Google Scholar
3 Carim, A. H.: J. Mater. Res. 4 (1989) 1456.10.1557/JMR.1989.1456Search in Google Scholar
4 Wacha, W.: „Ein Integriertes Softwaresystem zur Röntgenpulver-analyse“, Diplomarbeit, Vienna Institute of Technology, Vienna, Austria (1989).Search in Google Scholar
5 Massalski, T. B. (ed.): Binary Alloy Phase Diagrams, 2nd., ASM International, Materials Park, OH (1990).Search in Google Scholar
6 Pietzka, M. A.; Schuster, J. C.: J. Am. Ceram. Soc. 79 (1996) 2321.10.1111/j.1151-2916.1996.tb08979.xSearch in Google Scholar
7 Shull, R. D.; McAllister, A. J.; Reno, R. C.: in: G. Ljütjerring, U. Zwicker, W. Bunk (eds.), Proc. 5th Int. Conf. on Titanium, Deutsche Ges. f. Metallkunde, Oberursel (1985) 1459.Search in Google Scholar
8 McCullough, C.; Valencia, J. J.; Levi, C. G.; Mehrabian, R.: Acta Metall. 37 (1989) 1321.10.1016/0001-6160(89)90162-4Search in Google Scholar
9 Schuster, J. C.; Ipser, H.: Z. Metallkd. 81 (1990) 389.Search in Google Scholar
10 Abdel-Hamid, A.; Allibert, C. H.; Durand, F.: Z. Metallkd. 75 (1984) 455.Search in Google Scholar
11 Etchessahar, E.; Sohn, Y.; Harmelin, M.; Debuigne, J.: J. Less Comm. Met. 167 (1991) 261.10.1016/0022-5088(91)90281-8Search in Google Scholar
12 Lengauer, W.: Acta Metall. Mater. 39 (1991) 2985.10.1016/0956-7151(91)90031-USearch in Google Scholar
13 Okamoto, H.: J. Phase Equil. 14 (1993) 536.Search in Google Scholar
14 Ran, Q.; Stadelmayer, H. H.: in: G. Petzow; G. Effenberg (eds.), The System Al–Cu–Ti, Ternary Alloys, Vol. 5, VCH, Weinheim (1992) 51–65.Search in Google Scholar
15 Virdis, P.; Zwicker, U.: Z. Metallkd. 62 (1971) 46.Search in Google Scholar
16 Markiv, V. Ya.; Burnashova, V. V.; Ryabov, V. P.: Izv. Akad. Nauk Ukr. SSR, Metallofiz. 46 (1973) 103.Search in Google Scholar
17 Lugscheider, E.; Kötzing, B.: Report to BMFT project 03K07049 (COST507), RWTH Aachen (1994).Search in Google Scholar
18 Westman, S.: Acta Chem. Scand. 19 (1965) 2369.10.3891/acta.chem.scand.19-2369Search in Google Scholar
19 Wriedt, H. A.; Murray, J. L.: Bull. Alloy Phase Diagr. 8 (1987) 378.10.1007/BF02869274Search in Google Scholar
20 Schuster, J. C.: Z. Kristallogr. 175 (1986) 211.10.1524/zkri.1986.175.3-4.211Search in Google Scholar
21 Pshenichnaya, O. V.; Verkhovodov, P. A.; Kislyi, P. S.; Kuzenkova, M. A.; Goncharuk, A. B.: Poroshk. Met. 10 (1983) 851.Search in Google Scholar
22 Kabbaj, M.; Galerie, A.; Caillet, M.: J. Less Comm. Met. 108 (1985) 1.10.1016/0022-5088(85)90427-8Search in Google Scholar
23 Schuster, J. C.; Bauer, J.: J. Solid State Chem. 53 (1984) 260.10.1016/0022-4596(84)90100-2Search in Google Scholar
24 Gausmann, T.; Schmid-Fetzer, R.: DVS-Berichte 148 (1992) 276.Search in Google Scholar
25 Pietzka, M. A.; Schuster, J. C.: paper present at 25th CALPHAD conference, Erice, Italy (1996).Search in Google Scholar
26 Villars, P.; Calvert, L. D.: Pearsons Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Materials Park, OH (1991).Search in Google Scholar
27 Barbier, F.; Peytour, C.; Revcolevschi, A.: J. Amer. Ceram. Soc. 73 (1990) 1582.10.1111/j.1151-2916.1990.tb09799.xSearch in Google Scholar
28 Carim, A. H.: Scr. Metall. Mater. 25 (1991) 51.10.1016/0956-716X(91)90352-2Search in Google Scholar
29 Santella, M. L.; Horton, J. A.; Pak, J. J.: J. Amer. Ceram. Soc. 73 (1990) 1785.10.1111/j.1151-2916.1990.tb09835.xSearch in Google Scholar
30 Karlsson, N.: J. Inst. Met. 79 (1950) 319.Search in Google Scholar
31 Kelkar, G. P.; Carim, A. H.: J. Amer. Ceram. Soc. 76 (1993) 1815.10.1111/j.1151-2916.1993.tb06652.xSearch in Google Scholar
32 ElBoragy, M.; Szepan, R.; Schubert, K.: J. Less Comm. Met. 29 (1972) 133.10.1016/0022-5088(72)90183-XSearch in Google Scholar
CVD of Nonmetals
William S. Rees, jr. (ed.), VCH, Weinheim, Germany (1996)
ISBN 3-527-29295-0, hardcover, 424 pages, 149 figs., 46 tables, DM 238.–
The carcoal cave paintings of prehistoric art, based on soot, are, perhaps, one of the most ancient application of solid coating prepared from a gaseous precursor by means of a chemical transformation named Chemical Vapour Deposition (CVD). Today CVD forms the backbone of several modern technologies, i. e. the preparation of aerospace composites or protective over-layings of decorative jewelry with TiNx.
The book covers the area of preparation via CVD of non-metallic materials and, so, complement a series of books on CVD consisting of books on the growth of elemental metals via CVD edited by Kodas and Hampden-Smith and the epitaxial preparation of compound semiconducting materials by CVD presented by O’Brien and Jones.
The book starts with an introducting chapter by W.S. Rees, jr., presenting an overview of different methods of CVD techniques and the reaction kinetics CVD and thermodynamics in CVD. Chapter 2 by D.L. Schulz and T.J. Marks is focused on low- and high-temperature superconducting materials, i. e. the A15-superconductors (A3B phases), NbN films, and VBa2Cu3O7–x, as well as, Tl- and Bi-based high-temperature superconductors. Chapter 3 by T. Gerin and K.-H. Dahmen deals with the CVD of conducting materials, e. g. nitrides, halides, Indium-, Tin- and Zinc oxide systems.
Chapter 4 by G.S. Tompa presents CVD of semiconducting materials including group II-VI, III-V, IV-IV, carbides, oxides and organic materials.
Chapter 5 by A.R. Barron is focused on the CVD of insulating materials, e. g. oxides, nitrides, sulfides and fluorides.
Chapter 6 by W.J. Lackey deals with structural ceramics coatings and composites by chemical vapour infiltration of, e. g. carbon.
Finally, in chapter 7 by G.E. Kräuter and W.S. Rees, jr., describe CVD of various materials, e. g. oxides, sulfides, selenides and tellurides, nitrides, carbides, borides and complex ceramic materials.
The book is completed by a comprehensive glossary and index. All materials related chapters contain subchapters focused on basic aspects of the materials (crystal chemistry and structure) and their application giving an overview on the great diversity of materials in modern technologies. The various precursors for CVD of the different materials and reaction schemes are presented, as well as technical aspects, e. g. reactor design and different deposition techniques. Each chapter contains a comprehensive list of references, summing up to the amount of 1361 references of the entire book.
The book represents a useful reference to the practitiners in the field, as well as an excellent entry for the novice.
Peter Majewski, Stuttgart
© 1997 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Aufsätze
- Gradient Materials: An Overview of a Novel Concept
- On the Systematics of Phase Equilibria in Complex Magnesium-Rare Earth Systems: Gd–Y–Mg System
- Discussion of the Al–Co Phase Diagram
- Phase Equilibria in the Al-rich Portion of the Ternary System Co– Ni –Al at 75 and 78 at.% Al
- Phases and Phase Equilibria in the Quaternary System Ti –Cu–Al –N at 850 °C
- Atom Probe Analysis of the First Stage of Tempering of Iron–Carbon–Nitrogen Martensite
- Deformation Behaviour and Two-way Shape Memory Effect of NiTi Alloys
- Physical Interpretation of a Viscoplastic Model Applied to High Temperature Performance of a Nickel-base Superalloy
- Prediction of Solute Concentration Profiles for Discontinuous Dissolution
- Interdiffusion in the Ti-rich Phases of the Ti – Al System
- Interdiffusion Studies in the System MgO–FeO
- Crystallization of MgO–B2O3–SiO2 Slag Observed by In Situ TEM
- Mitteilungen der Deutschen Gesellschaft für Materialkunde e.V.
- Personen
- Buchbesprechungen
- P. Gümpel: Rostfreie Stähle
- Terminkalender
Articles in the same Issue
- Frontmatter
- Aufsätze
- Gradient Materials: An Overview of a Novel Concept
- On the Systematics of Phase Equilibria in Complex Magnesium-Rare Earth Systems: Gd–Y–Mg System
- Discussion of the Al–Co Phase Diagram
- Phase Equilibria in the Al-rich Portion of the Ternary System Co– Ni –Al at 75 and 78 at.% Al
- Phases and Phase Equilibria in the Quaternary System Ti –Cu–Al –N at 850 °C
- Atom Probe Analysis of the First Stage of Tempering of Iron–Carbon–Nitrogen Martensite
- Deformation Behaviour and Two-way Shape Memory Effect of NiTi Alloys
- Physical Interpretation of a Viscoplastic Model Applied to High Temperature Performance of a Nickel-base Superalloy
- Prediction of Solute Concentration Profiles for Discontinuous Dissolution
- Interdiffusion in the Ti-rich Phases of the Ti – Al System
- Interdiffusion Studies in the System MgO–FeO
- Crystallization of MgO–B2O3–SiO2 Slag Observed by In Situ TEM
- Mitteilungen der Deutschen Gesellschaft für Materialkunde e.V.
- Personen
- Buchbesprechungen
- P. Gümpel: Rostfreie Stähle
- Terminkalender