Home Phases and Phase Equilibria in the Quaternary System Ti –Cu–Al –N at 850 °C
Article
Licensed
Unlicensed Requires Authentication

Phases and Phase Equilibria in the Quaternary System Ti –Cu–Al –N at 850 °C

  • Nuri Durlu , Uwe Gruber , Markus A. Pietzka , Harald Schmidt and Julius C. Schuster
Published/Copyright: December 1, 2021
Become an author with De Gruyter Brill

Abstract

Phase equilibria in the quaternary system Ti–Cu –Al –N are investigated using XRD, metallography and EDX, yielding the observation of 18 four phase spaces of the 850 °C isotherm. In the ternary boundary systems Ti– Cu–Al and Ti –Al –N, all previously reported phases are confirmed, but several tielines are newly determined. In the system Ti–N, the new ternary phase Ti3CuN dominates most phase fields. Based on thermochemical data of the binary boundary systems and the newly investigated or reinvestigated phase equilibria of the ternary boundary systems, a set of Gibbs energies for the solid phases occuring in the quaternary system is derived, which is used in combination with the quaternary experimental data to derive a large section of the isotherm for Ti –Cu –Al –N at 850 °C. The quaternary g-phase (Ti, Cu, Al)6N having the composition Ti3Cu2Al1N0.8 is found to be the only stable quaternary phase of this system. Several η-phases isotypic to Ti3Cu2Al1N0.8 are synthesized to explore the crystal chemistry effects of substitutions on different crystallographic sites.


N. Durlu, U. Gruber, M. A. Pietzka, H. Schmidt, J. Schuster Institut für Physikalische Chemie, Universität Wien, Währingerstr. 42, A-1190 Wien, Austria
William S. Rees, jr. (ed.), VCH, Weinheim, Germany (1996)
Peter Majewski, Stuttgart

Literatur

1 COST507 – Thermodynamic Database for Light Metal Alloys, Version Jan. 1995.Search in Google Scholar

2 Schuster, J. C.; Durlu, N.: in: H. Krappitz, H. A. Schaeffer (eds.), Joining Ceramics, Glass and Metal, Deutsche Glastechn. Ges. e.V., Frankfurt/Main, 1993, 22–27.Search in Google Scholar

3 Carim, A. H.: J. Mater. Res. 4 (1989) 1456.10.1557/JMR.1989.1456Search in Google Scholar

4 Wacha, W.: „Ein Integriertes Softwaresystem zur Röntgenpulver-analyse“, Diplomarbeit, Vienna Institute of Technology, Vienna, Austria (1989).Search in Google Scholar

5 Massalski, T. B. (ed.): Binary Alloy Phase Diagrams, 2nd., ASM International, Materials Park, OH (1990).Search in Google Scholar

6 Pietzka, M. A.; Schuster, J. C.: J. Am. Ceram. Soc. 79 (1996) 2321.10.1111/j.1151-2916.1996.tb08979.xSearch in Google Scholar

7 Shull, R. D.; McAllister, A. J.; Reno, R. C.: in: G. Ljütjerring, U. Zwicker, W. Bunk (eds.), Proc. 5th Int. Conf. on Titanium, Deutsche Ges. f. Metallkunde, Oberursel (1985) 1459.Search in Google Scholar

8 McCullough, C.; Valencia, J. J.; Levi, C. G.; Mehrabian, R.: Acta Metall. 37 (1989) 1321.10.1016/0001-6160(89)90162-4Search in Google Scholar

9 Schuster, J. C.; Ipser, H.: Z. Metallkd. 81 (1990) 389.Search in Google Scholar

10 Abdel-Hamid, A.; Allibert, C. H.; Durand, F.: Z. Metallkd. 75 (1984) 455.Search in Google Scholar

11 Etchessahar, E.; Sohn, Y.; Harmelin, M.; Debuigne, J.: J. Less Comm. Met. 167 (1991) 261.10.1016/0022-5088(91)90281-8Search in Google Scholar

12 Lengauer, W.: Acta Metall. Mater. 39 (1991) 2985.10.1016/0956-7151(91)90031-USearch in Google Scholar

13 Okamoto, H.: J. Phase Equil. 14 (1993) 536.Search in Google Scholar

14 Ran, Q.; Stadelmayer, H. H.: in: G. Petzow; G. Effenberg (eds.), The System Al–Cu–Ti, Ternary Alloys, Vol. 5, VCH, Weinheim (1992) 51–65.Search in Google Scholar

15 Virdis, P.; Zwicker, U.: Z. Metallkd. 62 (1971) 46.Search in Google Scholar

16 Markiv, V. Ya.; Burnashova, V. V.; Ryabov, V. P.: Izv. Akad. Nauk Ukr. SSR, Metallofiz. 46 (1973) 103.Search in Google Scholar

17 Lugscheider, E.; Kötzing, B.: Report to BMFT project 03K07049 (COST507), RWTH Aachen (1994).Search in Google Scholar

18 Westman, S.: Acta Chem. Scand. 19 (1965) 2369.10.3891/acta.chem.scand.19-2369Search in Google Scholar

19 Wriedt, H. A.; Murray, J. L.: Bull. Alloy Phase Diagr. 8 (1987) 378.10.1007/BF02869274Search in Google Scholar

20 Schuster, J. C.: Z. Kristallogr. 175 (1986) 211.10.1524/zkri.1986.175.3-4.211Search in Google Scholar

21 Pshenichnaya, O. V.; Verkhovodov, P. A.; Kislyi, P. S.; Kuzenkova, M. A.; Goncharuk, A. B.: Poroshk. Met. 10 (1983) 851.Search in Google Scholar

22 Kabbaj, M.; Galerie, A.; Caillet, M.: J. Less Comm. Met. 108 (1985) 1.10.1016/0022-5088(85)90427-8Search in Google Scholar

23 Schuster, J. C.; Bauer, J.: J. Solid State Chem. 53 (1984) 260.10.1016/0022-4596(84)90100-2Search in Google Scholar

24 Gausmann, T.; Schmid-Fetzer, R.: DVS-Berichte 148 (1992) 276.Search in Google Scholar

25 Pietzka, M. A.; Schuster, J. C.: paper present at 25th CALPHAD conference, Erice, Italy (1996).Search in Google Scholar

26 Villars, P.; Calvert, L. D.: Pearsons Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Materials Park, OH (1991).Search in Google Scholar

27 Barbier, F.; Peytour, C.; Revcolevschi, A.: J. Amer. Ceram. Soc. 73 (1990) 1582.10.1111/j.1151-2916.1990.tb09799.xSearch in Google Scholar

28 Carim, A. H.: Scr. Metall. Mater. 25 (1991) 51.10.1016/0956-716X(91)90352-2Search in Google Scholar

29 Santella, M. L.; Horton, J. A.; Pak, J. J.: J. Amer. Ceram. Soc. 73 (1990) 1785.10.1111/j.1151-2916.1990.tb09835.xSearch in Google Scholar

30 Karlsson, N.: J. Inst. Met. 79 (1950) 319.Search in Google Scholar

31 Kelkar, G. P.; Carim, A. H.: J. Amer. Ceram. Soc. 76 (1993) 1815.10.1111/j.1151-2916.1993.tb06652.xSearch in Google Scholar

32 ElBoragy, M.; Szepan, R.; Schubert, K.: J. Less Comm. Met. 29 (1972) 133.10.1016/0022-5088(72)90183-XSearch in Google Scholar

CVD of Nonmetals

William S. Rees, jr. (ed.), VCH, Weinheim, Germany (1996)

ISBN 3-527-29295-0, hardcover, 424 pages, 149 figs., 46 tables, DM 238.–

The carcoal cave paintings of prehistoric art, based on soot, are, perhaps, one of the most ancient application of solid coating prepared from a gaseous precursor by means of a chemical transformation named Chemical Vapour Deposition (CVD). Today CVD forms the backbone of several modern technologies, i. e. the preparation of aerospace composites or protective over-layings of decorative jewelry with TiNx.

The book covers the area of preparation via CVD of non-metallic materials and, so, complement a series of books on CVD consisting of books on the growth of elemental metals via CVD edited by Kodas and Hampden-Smith and the epitaxial preparation of compound semiconducting materials by CVD presented by O’Brien and Jones.

The book starts with an introducting chapter by W.S. Rees, jr., presenting an overview of different methods of CVD techniques and the reaction kinetics CVD and thermodynamics in CVD. Chapter 2 by D.L. Schulz and T.J. Marks is focused on low- and high-temperature superconducting materials, i. e. the A15-superconductors (A3B phases), NbN films, and VBa2Cu3O7–x, as well as, Tl- and Bi-based high-temperature superconductors. Chapter 3 by T. Gerin and K.-H. Dahmen deals with the CVD of conducting materials, e. g. nitrides, halides, Indium-, Tin- and Zinc oxide systems.

Chapter 4 by G.S. Tompa presents CVD of semiconducting materials including group II-VI, III-V, IV-IV, carbides, oxides and organic materials.

Chapter 5 by A.R. Barron is focused on the CVD of insulating materials, e. g. oxides, nitrides, sulfides and fluorides.

Chapter 6 by W.J. Lackey deals with structural ceramics coatings and composites by chemical vapour infiltration of, e. g. carbon.

Finally, in chapter 7 by G.E. Kräuter and W.S. Rees, jr., describe CVD of various materials, e. g. oxides, sulfides, selenides and tellurides, nitrides, carbides, borides and complex ceramic materials.

The book is completed by a comprehensive glossary and index. All materials related chapters contain subchapters focused on basic aspects of the materials (crystal chemistry and structure) and their application giving an overview on the great diversity of materials in modern technologies. The various precursors for CVD of the different materials and reaction schemes are presented, as well as technical aspects, e. g. reactor design and different deposition techniques. Each chapter contains a comprehensive list of references, summing up to the amount of 1361 references of the entire book.

The book represents a useful reference to the practitiners in the field, as well as an excellent entry for the novice.

Peter Majewski, Stuttgart

Received: 1996-07-01
Published Online: 2021-12-01

© 1997 Carl Hanser Verlag, München

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1997-0070/html
Scroll to top button