Article
Licensed
Unlicensed
Requires Authentication
Simulation of Continuous Polymerization in a Modular Intermeshing Co-rotating Twin Screw Extruder
Application to Caprolactam Conversion to Polyamide 6
-
H. Kye
Published/Copyright:
May 28, 2013
Abstract
A method of modeling chemical reactions in a modular inter-meshing co-rotating twin screw extruder is described. This is applied to simulate the anionic polymerization of caprolactam. Calculations are made for specific modular screw configurations. The screw configurations included both screw elements and kneading disc blocks. Reaction conversion and temperature rise were calculated along the screw axis. The results are compared to experiment.
Received: 1995-4-5
Accepted: 1995-9-13
Published Online: 2013-05-28
Published in Print: 1996-05-01
© 1996, Carl Hanser Verlag, Munich
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Contents
- Contents
- Editorial
- Eighteenth in a Series: Toshiba Machine
- Screw Extrusion
- Theoretical and Experimental Investigations of the Melting of Pellets in Co-Rotating Twin-Screw Extruders
- An Improved Flow Simulation Model for a Tangential Counter-Rotating Twin Screw Extruder
- Modeling and Experimental Study of the Flow in a Simplified Cavity Transfer Mixer
- An Analytical Model of the Conveying Behaviour of Closely Intermeshing Co-rotating Twin Screw Extruders
- Reactive Processing
- Simulation of Continuous Polymerization in a Modular Intermeshing Co-rotating Twin Screw Extruder
- Reactive Blending in a Twin Screw Extruder
- Die Extrusion
- Viscoelastic Simulations of Stratified Bicomponent Extrusion through Slit Dies
- Fibers
- Spinnability of Polymer Melts – a Complex Problem in Basic Research1)
- Molding
- Structure and Properties of Inflation Films of β-Phase Nucleating Agent-Added Polypropylene
- Inverse Modeling of Injection Molding Thermal Stresses to Optimize Temperature and Pressure History
- An Assessment of Thermal Stresses in Injection Moulded ABS Copolymer
- Rapid Communications
- Experimental Study on the Injection Compression Molding of Parts with Precision Contours
Articles in the same Issue
- Contents
- Contents
- Editorial
- Eighteenth in a Series: Toshiba Machine
- Screw Extrusion
- Theoretical and Experimental Investigations of the Melting of Pellets in Co-Rotating Twin-Screw Extruders
- An Improved Flow Simulation Model for a Tangential Counter-Rotating Twin Screw Extruder
- Modeling and Experimental Study of the Flow in a Simplified Cavity Transfer Mixer
- An Analytical Model of the Conveying Behaviour of Closely Intermeshing Co-rotating Twin Screw Extruders
- Reactive Processing
- Simulation of Continuous Polymerization in a Modular Intermeshing Co-rotating Twin Screw Extruder
- Reactive Blending in a Twin Screw Extruder
- Die Extrusion
- Viscoelastic Simulations of Stratified Bicomponent Extrusion through Slit Dies
- Fibers
- Spinnability of Polymer Melts – a Complex Problem in Basic Research1)
- Molding
- Structure and Properties of Inflation Films of β-Phase Nucleating Agent-Added Polypropylene
- Inverse Modeling of Injection Molding Thermal Stresses to Optimize Temperature and Pressure History
- An Assessment of Thermal Stresses in Injection Moulded ABS Copolymer
- Rapid Communications
- Experimental Study on the Injection Compression Molding of Parts with Precision Contours