Home Impact Behavior of Continuous Biaxial Reinforced Composites Based on Bio-Polyamides and Man-Made Cellulose Fibres
Article
Licensed
Unlicensed Requires Authentication

Impact Behavior of Continuous Biaxial Reinforced Composites Based on Bio-Polyamides and Man-Made Cellulose Fibres

  • M. Feldmann and F. Verheyen
Published/Copyright: May 10, 2016
Become an author with De Gruyter Brill

Abstract

Composites based on thermoplastic matrix and glass or carbon fibre fabrics, like the so called organic sheets, show high potential for structural parts, e. g. in automotive applications. In this study renewable organic sheets based on bio-polyamides with a melting point above 200 °C and polypropylene for reference purposes were prepared. High energy absorption for these composites were expected regarding the high elongation at break (> 10 %) of the man-made cellulose fibres. In comparison to the cellulose reinforced composites, glass fibre composites were prepared. The complete or partly bio-based composites, with a thickness of approx. 2 mm, were manufactured by a high precision hot-press using the film-stacking-process considering less fibre degradation at high processing temperatures. Besides dart drop tests (penetration mode and impact mode) and optical microscopy were done to characterize the composites. The bio-based composites show lower density, higher energy absorption rates and lower damping values as a consequence of the cellulose fibres properties and the fibre-matrix-adhesion.


*Correspondence address, Mail address: Maik Feldmann, Institute of Material Engineering, Polymer Engineering, University of Kassel, Mönchebergstrasse 3, 34125 Kassel, Germany, E-mail:

References

Adusumali, R., Reifferscheid, M., Weber, H., Roeder, T., Sixta, H. and Gindl, W., “Mechanical Properties of Regenerated Cellulose Fibres for Composites”, Macromol. Symp., 244, 119125 (2006) 10.1002/masy.200651211Search in Google Scholar

Bledzki, A. K., Jaszkiewicz, A., “Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP”, Compos. Sci. Technol., 12, 16871696 (2010) 10.1016/j.compscitech.2010.06.005Search in Google Scholar

Bledzki, A. K., Fink, H. P. and Specht, K., “Unidirectional Hemp and Flax EP- and PP-Composites: Influence of Defined Fibre Treatments”, J. Appl. Polym. Sci., 93, 21502156 (2004) 10.1002/app.20712Search in Google Scholar

Bledzki, A. K., Gassan, J. and Kessler, A., “Loss energy of Composite Materials. Part II: Impact Loading”, J. Test. Eval., 27, 3641 (1999) 10.1520/JTE12038JSearch in Google Scholar

Bledzki, A. K., Mamun, A. A. and Feldmann, M., “Polyoxymethylene Composites with Natural and Cellulose Fibres: Toughness and Heat Deflection Temperature”, Compos. Sci. Technol., 72, 18701874 (2012) 10.1016/j.compscitech.2012.08.004Search in Google Scholar

Bodros, E., Pillin, I., Montrelay, N. and Baley, C., “Could Biopolymers Reinforced by Randomly Scattered Flax Fibre Be Used in Structural Applications?”, Compos. Sci. Technol., 67, 462470 (2007) 10.1016/j.compscitech.2006.08.024Search in Google Scholar

Bond-Laminates GmbH, Tepex Advanced Thermoplastic Composites, http://www.bond-laminates.com/uploads/media/Tepex_brochure_01.pdf (2015)Search in Google Scholar

Brecher, C., Kermer-Meyer, A., Dubratz, M. and Emonts, M., “Thermoplastische Organobleche für die Großserie”, Automobiltechnische Zeitschrift: ATZ, 112, 2832 (2010)Search in Google Scholar

Buet-Gautier, K., Boisse, P., “Experimental Analysis and Modeling of Biaxial Mechanical Behavior of Woven Composite Reinforcements”, Exp. Mech., 41, 260269 (2001) 10.1007/BF02323143Search in Google Scholar

Chang, I., Lees, J., “Recent Development in Thermoplastic Composites: A Review of Matrix Systems and Processing Methods”, J. Thermoplast. Compos. Mater., 1, 277296 (1988) 10.1177/089270578800100305Search in Google Scholar

Choi, H., Downs, R. and Chang, F., “A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites due to Low-Velocity Impact: Part I – Experiments, J. Compos. Mater., 25, 10121038 (1991)10.1177/002199839102500804Search in Google Scholar

Choi, H., Wu, H. and Chang, F., “A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites due to Low-Velocity Impact: Part II-Analysis”, J. Compos. Mater., 25, 10121038 (1991)10.1177/002199839102500804Search in Google Scholar

Feldmann, M., “Biobasierte Polyamide mit Cellulosefasern Verfahren-Struktur-Eigenschaften”, PhD-Thesis, Institute of Material Engineering, University of Kassel, Kassel, Germany (2012)Search in Google Scholar

Feldmann, M., Bledzki, A. K., “Bio-Based Polyamides Reinforced with Cellulosic Fibres-Processing and Properties”, Compos. Sci. Technol., 100, 113120 (2014) 10.1016/j.compscitech.2014.06.008Search in Google Scholar

Feldmann, M., Heim, H. P. and Zarges, J. C., “Influence of the Process Parameters on the Mechanical Properties of Engineering Biocomposites Using a Twin-Screw Extruder”, Composites Part A (2015) 10.1016/j.compositesa.2015.03.028Search in Google Scholar

Friedrich, K., Almajid, A. A., “Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications”, Appl. Compos. Mater., 20, 107128 (2013) 10.1007/s10443-012-9258-7Search in Google Scholar

Ganster, J., Erdmann, J., Fink, H.-P., “Polymilchsäure: Natürlich maßgeschneidert verstärkt”, Kunststoffe, 12, 7376 (2011)Search in Google Scholar

Gassan, J., Bledzki, A. K., “Possibilities for Improving the Mechanical Properties of Jute/Epoxy Composites by Alkali Treatment of Fibres”, Compos. Sci. Technol., 59, 13031309 (1999) 10.1016/S0266-3538(98)00169-9Search in Google Scholar

Gassan, J., Mildner, I., and Bledzki, A. K., “Influence of Fiber Structure Modification on the Mechanical Properties of Flax Fibre-Epoxy Composites”, Mech. Compos. Mater., 35, 435440 (1999) 10.1007/BF02329330Search in Google Scholar

Graupner, N., Herrmann, A. S. and Müssig, J., “Natural and Man-Made Cellulose Fibre-Reinforced Poly(lactic acid) (PLA) Composites: An Overview about Mechanical Characteristics and Application Areas”, Composites Part A, 40, 810821 (2009) 10.1016/j.compositesa.2009.04.003Search in Google Scholar

Hoffmann, L., Renn, M., Drummer, D. and Müller, T., “Hochbelastbare Faserverbundbauteile großserientauglich hergestellt”, Lightweight Design, 4, 3843 (2011) 10.1365/s35725-011-0019-6Search in Google Scholar

Huber, T., Bickerton, S., Müssig, J., Pang, S. and Staiger, M., “Flexural and Impact Properties of All-Cellulose Composite Laminates”, Compos. Sci. Technol., 88, 9298 (2013) 10.1016/j.compscitech.2013.08.040Search in Google Scholar

Huda, M. S., Drzal, L. T., Mohanty, A. K. and Misra, M., “Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites from Poly(lactic acid)(PLA) and Kenaf Fibers”, Compos. Sci. Technol., 68, 424432 (2008) 10.1016/j.compscitech.2007.06.022Search in Google Scholar

Kiziltas, A., Lee, E., “Sustainable Composites Based on Polyamides and Cellulose Fibers”, http://www.speautomotive.com/SPEA_CD/SPEA2014/pdf/SC/SC3.pdf (2015)Search in Google Scholar

Mader, A., Volkmann, E., Einsiedel, R. and Müssig, J., “Impact and Flexural Properties of Unidirectional Man-Made Cellulose Reinforced Thermoset Composites”, J. Biobased Mater. Bioenergy, 6, 481492 (2012) 10.1166/jbmb.2012.1229Search in Google Scholar

Mayer, C., Wang, X. and Neitzel, M., “Macroand Micro-Impregnation Phenomena in Continuous Manufacturing of Fabric Reinforced Thermoplastic Composites”, Composites Part A, 29, 783793 (1998) 10.1016/S1359-835X(98)00056-6Search in Google Scholar

Neitzel, M.: Handbuch Verbundwerkstoffe, Hanser Publishers, Munich (2004)Search in Google Scholar

Ouagne, P., Bizet, L., Baley, C. and Bréard, J., “Analysis of the Film-Stacking Processing Parameters for PLLA/Flax Fiber Biocomposites”, J. Compos. Mater., 44, 12011215 (2010) 10.1177/0021998309349019Search in Google Scholar

Reinhardt, M., Kaufmann, J., Kausch, M. and Kroll, L., “PLA-Viscose-Composites with Continuous Fibre Reinforcement for Structural Applications”, Procedia Mater. Sci., 2, 137143 (2013) 10.1016/j.mspro.2013.02.016Search in Google Scholar

Saheb, D. N., Jog, J. P., “Natural Fiber Polymer Composites: A Review”, Adv. Polym. Technol., 18, 351363 (1999) 10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-XSearch in Google Scholar

Shen, D. K., Gu, S., “The Mechanism for Thermal Decomposition of Cellulose and its Main Products”, Bioresour. Technol., 100, 64966504 (2009) 10.1016/j.biortech.2009.06.095Search in Google Scholar

Shen, D., Xiao, R., Gu, S. and Zhang, H., “The Overview of Thermal Decomposition of Cellulose in Lignocellulosic Biomass”, Cellulose – Biomass Conversion, Croatia (2013) 10.5772/51883Search in Google Scholar

Shyr, T. W., Pan, Y. H., “Impact Resistance and Damage Characteristics of Composite Laminates”, Compos. Struct., 62, 193203 (2003) 10.1016/S0263-8223(03)00114-4Search in Google Scholar

Wang, X., Mayer, C. and Neitzel, M., “Some Issues on Impregnation in Manufacturing of Thermoplastic Composites by Using a Double Belt Press”, Polym. Compos., 18, 701710 (1997) 10.1002/pc.10323Search in Google Scholar

Received: 2015-07-09
Accepted: 2015-11-15
Published Online: 2016-05-10
Published in Print: 2016-05-29

© 2016, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Regular Contributed Articles
  4. Research and Application of Wireless Temperature Measurement Device in High Temperature Enclosed Environment
  5. Influence on Product Quality by pvT-Optimised Processing in Injection Compression Molding
  6. Effect of Plug Temperature on the Strain and Thickness Distribution of Components Made by Plug Assist Thermoforming
  7. Influence of Processing Parameters and Composition on the Effective Compatibilization of Polypropylene–Poly(ethylene terephthalate) Blends
  8. Impact Modification of Isotactic Polypropylene with Ethylene-Propylene Diene Monomer Rubber
  9. Impact Behavior of Continuous Biaxial Reinforced Composites Based on Bio-Polyamides and Man-Made Cellulose Fibres
  10. Preparation and Anti-Fouling Property of Acryloylmorpholine-Grafted PVDF Membrane: The Effect of Cross-Linking Agent
  11. Fine Filament Formation Behavior of Polymethylpentene and Polypropylene near Spinneret in Melt Blowing Process
  12. Fracture Toughness of PP/EPDM/Nano-Ternary Composites: The Role of Distribution of Inorganic Particles
  13. CO2 Laser Ablation of Microchannel on PMMA Substrate for Effective Fabrication of Microfluidic Chips
  14. A Novel Micro Wall Slip Model Based on Chain Length and Temperature
  15. Electrical and Mechanical Properties of Antistatic Poly(vinyl chloride) Composites Filled with Silver Plated Hollow Glass Microspheres
  16. Prototype System to Study the Effect of Weld Lines on the Performance of Extruded Profiles
  17. Extrudate Swell of High Density Polyethylenes in Slit (Flat) Dies
  18. PPS News
  19. PPS News
  20. Seikei Kakou Abstracts
  21. Seikei-Kakou Abstracts
Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.3142/pdf
Scroll to top button