Prediction of Screw Length Required for Polymer Melting and Melting Characteristics
-
T. Liu
Abstract
The previous study on the dynamic processing characteristics of co-rotating twin-screw extruder based on a visible technique (which employed a “transparent” extruder) performed by the authors Wong et al. [1 and 2] had enabled a quantitative treatment to be carried out in the present paper on the melting behaviour of polymer during an extrusion process. The qualitative analysis performed previously [1] had led to the development of a melting model which was capable of revealing some of the fundamental melting behaviour. The model also enabled the determination of the length of screw required for completing melting (Zr). Melting characteristics in terms of effects of solid feeding rate, temperature, screw speed and channel depth on the predicted Zr were discussed to further our understanding on melting performance of polymer melt in intermeshing corotating twin-screw extruder.
© 2001, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Ninth of a Series Pioneer of the Modular Co-rotating Twin Screw Extruder–Rudolf Erdmenger (1911–1991)
- Internal Mixer
- The “New-Generation” Co-flow Intermeshing Internal Mixer
- Screw Extrusion/Continuous Mixers
- Twin Screw Compounding of PE-HD Wood Flour Composites
- A Transient Melting Model of Polymer Balls Sliding Against the Barrel
- Prediction of Screw Length Required for Polymer Melting and Melting Characteristics
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- The Mapping Method for Mixing Optimization Part I: The Multiflux Static Mixer
- The Mapping Method for Mixing Optimization
- Reactive Processing
- Comparison Studies of Anionic Polymerization of Caprolactam in Different Twin Screw Extruders
- Compatibilization of SBR/NBR Blends Using Chemically Modified Styrene Butadiene Rubber
- Coextrusion
- Convective Instabilities in the Coextrusion Process
- Numerical Simulation of Polymer Coextrusion Flows
- Thermoforming
- Tight Tolerance Thermoforming
Articles in the same Issue
- Editorial
- Ninth of a Series Pioneer of the Modular Co-rotating Twin Screw Extruder–Rudolf Erdmenger (1911–1991)
- Internal Mixer
- The “New-Generation” Co-flow Intermeshing Internal Mixer
- Screw Extrusion/Continuous Mixers
- Twin Screw Compounding of PE-HD Wood Flour Composites
- A Transient Melting Model of Polymer Balls Sliding Against the Barrel
- Prediction of Screw Length Required for Polymer Melting and Melting Characteristics
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- The Mapping Method for Mixing Optimization Part I: The Multiflux Static Mixer
- The Mapping Method for Mixing Optimization
- Reactive Processing
- Comparison Studies of Anionic Polymerization of Caprolactam in Different Twin Screw Extruders
- Compatibilization of SBR/NBR Blends Using Chemically Modified Styrene Butadiene Rubber
- Coextrusion
- Convective Instabilities in the Coextrusion Process
- Numerical Simulation of Polymer Coextrusion Flows
- Thermoforming
- Tight Tolerance Thermoforming