Comparison Studies of Anionic Polymerization of Caprolactam in Different Twin Screw Extruders
-
B. H. Lee
and J. L. White
Abstract
There is a study on the comparison of twin screw extruders and a batch mixer in the polymerization of caproiactam. A sodium metal initiator and 4–4'-diphenylmethane diisocyanate (MDI) as the activator were used. Our attention is given to (i) a modular intermeshing co-rotating twin screw extruder, (ii) a modular intermeshing counter-rotating twin screw extruder and (Hi) a modular tangential counter-rotating twin screw extruder. We consider the variables of screw configuration, temperature profile, screw speed, and throughput on polymer characteristics. It was found that the conversion of twin screw extruders with proper mixing segments is much higher than the internal mixer at low mixing times. This was seen as higher conversion in twin screw extruders than an internal mixer for the same mean residence time considered.
© 2001, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Ninth of a Series Pioneer of the Modular Co-rotating Twin Screw Extruder–Rudolf Erdmenger (1911–1991)
- Internal Mixer
- The “New-Generation” Co-flow Intermeshing Internal Mixer
- Screw Extrusion/Continuous Mixers
- Twin Screw Compounding of PE-HD Wood Flour Composites
- A Transient Melting Model of Polymer Balls Sliding Against the Barrel
- Prediction of Screw Length Required for Polymer Melting and Melting Characteristics
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- The Mapping Method for Mixing Optimization Part I: The Multiflux Static Mixer
- The Mapping Method for Mixing Optimization
- Reactive Processing
- Comparison Studies of Anionic Polymerization of Caprolactam in Different Twin Screw Extruders
- Compatibilization of SBR/NBR Blends Using Chemically Modified Styrene Butadiene Rubber
- Coextrusion
- Convective Instabilities in the Coextrusion Process
- Numerical Simulation of Polymer Coextrusion Flows
- Thermoforming
- Tight Tolerance Thermoforming
Articles in the same Issue
- Editorial
- Ninth of a Series Pioneer of the Modular Co-rotating Twin Screw Extruder–Rudolf Erdmenger (1911–1991)
- Internal Mixer
- The “New-Generation” Co-flow Intermeshing Internal Mixer
- Screw Extrusion/Continuous Mixers
- Twin Screw Compounding of PE-HD Wood Flour Composites
- A Transient Melting Model of Polymer Balls Sliding Against the Barrel
- Prediction of Screw Length Required for Polymer Melting and Melting Characteristics
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- The Mapping Method for Mixing Optimization Part I: The Multiflux Static Mixer
- The Mapping Method for Mixing Optimization
- Reactive Processing
- Comparison Studies of Anionic Polymerization of Caprolactam in Different Twin Screw Extruders
- Compatibilization of SBR/NBR Blends Using Chemically Modified Styrene Butadiene Rubber
- Coextrusion
- Convective Instabilities in the Coextrusion Process
- Numerical Simulation of Polymer Coextrusion Flows
- Thermoforming
- Tight Tolerance Thermoforming