A Transient Melting Model of Polymer Balls Sliding Against the Barrel
-
K. L. Yung
Abstract
In the study of solid conveying process in plastics screw extrusion, a particle element numerical method enables us to simulate behavior of each solid particle during the process and takes into consideration the parameters of individual particle in the calculation.
The melting of pellets in the solid conveying section is caused predominantly by heat from both friction and conduction through close contact. Experiments showed, melting happened before the solid plug was formed. Hence, when a particle element numerical method is used to simulate the conveying and melting process in the injection bellow, the analysis of melting process caused by solid particles sliding against wall of bellow should be included. Searching through the recent literature, no valid analysis of the transient close-contact melting process caused by viscous dissipation was found. This paper attempts to present an analysis of the melting process and derive an expression for describing the transient melting caused by both friction and close-contact heating. The melting model of polymer pellets sliding against the barrel was achieved by assuming the friction against the barrel as friction against an isothermal wall given the high heat conductivity of the barrel. To keep the expression simple, a constant temperature boundary condition is utilized for the wall which concurs with reality.
© 2001, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Ninth of a Series Pioneer of the Modular Co-rotating Twin Screw Extruder–Rudolf Erdmenger (1911–1991)
- Internal Mixer
- The “New-Generation” Co-flow Intermeshing Internal Mixer
- Screw Extrusion/Continuous Mixers
- Twin Screw Compounding of PE-HD Wood Flour Composites
- A Transient Melting Model of Polymer Balls Sliding Against the Barrel
- Prediction of Screw Length Required for Polymer Melting and Melting Characteristics
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- The Mapping Method for Mixing Optimization Part I: The Multiflux Static Mixer
- The Mapping Method for Mixing Optimization
- Reactive Processing
- Comparison Studies of Anionic Polymerization of Caprolactam in Different Twin Screw Extruders
- Compatibilization of SBR/NBR Blends Using Chemically Modified Styrene Butadiene Rubber
- Coextrusion
- Convective Instabilities in the Coextrusion Process
- Numerical Simulation of Polymer Coextrusion Flows
- Thermoforming
- Tight Tolerance Thermoforming
Articles in the same Issue
- Editorial
- Ninth of a Series Pioneer of the Modular Co-rotating Twin Screw Extruder–Rudolf Erdmenger (1911–1991)
- Internal Mixer
- The “New-Generation” Co-flow Intermeshing Internal Mixer
- Screw Extrusion/Continuous Mixers
- Twin Screw Compounding of PE-HD Wood Flour Composites
- A Transient Melting Model of Polymer Balls Sliding Against the Barrel
- Prediction of Screw Length Required for Polymer Melting and Melting Characteristics
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- Melting of Polymer Blends in Co-rotating Twin Screw Extruders
- The Mapping Method for Mixing Optimization Part I: The Multiflux Static Mixer
- The Mapping Method for Mixing Optimization
- Reactive Processing
- Comparison Studies of Anionic Polymerization of Caprolactam in Different Twin Screw Extruders
- Compatibilization of SBR/NBR Blends Using Chemically Modified Styrene Butadiene Rubber
- Coextrusion
- Convective Instabilities in the Coextrusion Process
- Numerical Simulation of Polymer Coextrusion Flows
- Thermoforming
- Tight Tolerance Thermoforming