Home Technology Determination of Process Parameters for Friction Stir Welded Dissimilar Aluminum Alloys: AA 5083 and AA 2024
Article
Licensed
Unlicensed Requires Authentication

Determination of Process Parameters for Friction Stir Welded Dissimilar Aluminum Alloys: AA 5083 and AA 2024

  • Şefika Kasman and Sertan Ozan
Published/Copyright: July 6, 2020
Become an author with De Gruyter Brill

Abstract

In this study, dissimilar friction stir welding (FSW) processes were performed using Taguchi L9 orthogonal layout on AA 5083 H111 and AA 2024 T351 plates. The ultimate tensile strength (UTS) and percentage of elongation (∊t) were evaluated as the performance characteristics of the FS welded joints. A Taguchi based grey relational analysis was conducted using a grey relational grade (GRG) to obtain a welded joint with an optimal combination of high strength and ductility. Taking the largest mean value of GRG into consideration, the optimal welding combination was obtained using a tool with straight-threaded pin shape with the process parameters of 500 min−1 tool rotational speed (TRS) and 63 mm/min welding speed (WS). This combination was obtained from the experimental combinations in the Taguchi L9 orthogonal layout. Additionally, analysis of variance was performed to investigate the effect of parameters on GRG value and significance of the parameters. It was revealed that the effectiveness of each parameter was ranked: TRS (48.02%) > tool type (30.60%) > WS (21.12%). Tunnel and cavity-type defects were found to occur in the welded joints produced with the TRS of 630 and 800 min−1. Notably, the weakest welded joints were produced with the WS of 63 mm/min and 80 mm/min.

Kurzfassung

In dieser Untersuchung wurden unter Verwendung eines orthogonalen Versuchsplans (L9) nach Taguchi durch Rührreibschweißen (RRS) Mischschweißverbindungen mit Platten aus AA 5083 H111 und AA 2024 T351 erzeugt. Als Leistungsmerkmale der RR-Schweißverbindungen wurden die Zugfestigkeit (ZF) und die prozentuale Dehnung (∊t) ausgewertet. Auf Grundlage eines „Grey Relational Grade“ (grauer relationaler Grad, GRG) wurde die auf Taguchi zurückgehende „Grey Relational Analysis“ (graue relationale Analyse) durchgeführt, um eine durch eine optimale Kombination aus hoher Festigkeit und Duktilität charakterisierte Schweißverbindung zu realisieren. Unter Berücksichtigung des höchsten GRG-Mittelwerts erwies sich der Einsatz eines Werkzeugs mit einem Stift (Pin) mit geradem Gewinde bei einer Werkzeugdrehzahl (WDZ) von 500 min−1 und einer Schweißgeschwindigkeit (SG von 63 mm/min als Prozessparameter als optimale Konstellation. Diese Konstellation wurde anhand von Versuchen mit Kombinationen im orthogonalen Versuchsplan L9 nach Taguchi ermittelt. Zusätzlich wurde eine Varianzanalyse durchgeführt, um die Auswirkung der Parameter auf den GRG-Wert und die Signifikanz der Parameter zu untersuchen. Dabei ergab sich eine abgestufte Rangordnung der Wirksamkeit der einzelnen Parameter: WDZ (engl. tool rotational speed, TRS) (48,02%) > Werkzeugtyp WT (engl. Tool type, TT) (30,60%) > SG) (engl. Welding speed, WS) (21,12%). Bei mit einer WDZ von 630 und 800 min−1 hergestellten Schweißverbindungen wurden Tunnelfehler und Hohlräume beobachtet. Die schwächsten Schweißverbindungen wurden mit den Schweißgeschwindigkeiten 63 mm/min und 80 mm/min erzeugt.


Übersetzung: E. Engert


References / Literatur

[1] Ahmadnia, M.; Shahraki, S.; Kamarposhti, M.A.: Experimental studies on optimized mechanical properties while dissimilar joining AA6061 and AA5010 in a friction stir welding process, Int. J. Adv. Manuf. Technol.87 (2016) 23372352. DOI: 10.1007/s00170-016-8636-ySearch in Google Scholar

[2] Khan, N.Z.; Siddiquee, A.N.; Khan, Z.A.; Mukhopadhyay, A.K.: Mechanical and microstructural behavior of friction stir welded similar and dissimilar sheets of AA2219 and AA7475 aluminium alloys, J. Alloys Compd.695 (2017) 29022908. DOI: 10.1016/j.jallcom.2016.11.389Search in Google Scholar

[3] Sundaram, N.S.; Murugan, N.: Dependence of ultimate tensile strength of friction stir welded AA2024-T6 aluminium alloy on friction stir welding process parameters, Mechanika, (2009) 1724.Search in Google Scholar

[4] Tiamiyu, A.A.; Badmos, A.Y.; Odeshi, A.G.; Szpunar, J.A.: The influence of temper condition on adiabatic shear failure of AA 2024 aluminum alloy, Mater. Sci. Eng. A Struct. Mater.708 (2017) 492502. DOI: 10.1016/j.msea.2017.10.026Search in Google Scholar

[5] Ilman, M.N.: Chromate inhibition of environmentally assisted fatigue crack propagation of aluminium alloy AA 2024-T3 in 3.5% NaCl solution, Int. J. Fatigue62 (2014) 228235. DOI: 10.1016/j.ijfatigue.2013.03.008Search in Google Scholar

[6] Koilraj, M.; Sundareswaran, V.; Vijayan, S.; Rao, S.R.K.: Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083-Optimization of process parameters using Taguchi technique, Mater. Design42 (2012) 17. DOI: 10.1016/j.matdes.2012.02.016Search in Google Scholar

[7] Franchim, A.S.; Fernandez, F.F.; Travessa, D.N.: Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet, Mater. Design32 (2011) 46844688. DOI: 10.1016/j.matdes.2011.06.055Search in Google Scholar

[8] Genevois, C.; Deschamps, A.; Denquin, A.; Doisneau-Cottignies, B.: Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Mater.53 (2005) 24472458. DOI: 10.1016/j.actamat.2005.02.007Search in Google Scholar

[9] Trimble, D.; Monaghan, J.; O‘Donnell, G.E.: Force generation during friction stir welding of AA2024-T3, Cirp Ann. Manuf. Technol.61 (2012) 912. DOI: 10.1016/j.cirp.2012.03.024Search in Google Scholar

[10] Arora, K.S.; Pandey, S.; Schaper, M.; Kumar, R.: Microstructure evolution during friction stir welding of aluminum alloy AA2219, J. Mater. Sci. Technol.26 (2010) 747753. DOI: 10.1016/S1005-0302(10)60118-1Search in Google Scholar

[11] Sutton, M.A.; Yang, B.; Reynolds, A.P.; TaylorR.: Microstructural studies of friction stir welds in 2024-T3 aluminum, Mater. Sci. Eng. A Struct. Mater.323 (2002) 160166. DOI: 10.1016/S0921-5093(01)01358-2Search in Google Scholar

[12] Amancio, S.T.; Sheikhi, S.; dos Santos, J.F.; Bolfarini, C.: Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4, J. Mater. Process. Technol.206 (2008) 132142. DOI: 10.1016/j.jmatprotec.2007.12.008Search in Google Scholar

[13] Liu, P.; Liu, G.L.; Deng, Y.; Li, J.N.; Jing, C.N.; Feng, K.Y.: Microstructure and precipitated phase in the thermo-mechanically affected zone of friction stir welded joint for 2024 aluminium alloy, Kovove Mater.54 (2016) 363367. DOI: 10.4149/km_2016_5_363Search in Google Scholar

[14] Grujicic, M.; Arakere, G.; Yalavarthy, H.V.; He, T.; Yen, C.F.; Cheeseman, B.A.: Modeling of AA5083 material-microstructure evolution during butt friction-stir welding, J. Mater. Eng. Perform.19 (2010) 672684. DOI: 10.1007/s11665-009-9536-1Search in Google Scholar

[15] Kumar, R.; Singh, K.; Pandey, S.: Process forces and heat input as function of process parameters in AA5083 friction stir welds, T. Nonferr. Metal. Soc.22 (2012) 288298. DOI: 10.1016/S1003-6326(11)61173-4Search in Google Scholar

[16] Sundaram, N.S.; Murugan, N.: Tensile behavior of dissimilar friction stir welded joints of aluminium alloys, Mater. Design31 (2010) 41844193. DOI: 10.1016/j.matdes.2010.04.035Search in Google Scholar

[17] Park, S.W.; Yoon, T.J.; Kang, C.Y.: Effects of the shoulder diameter and weld pitch on the tensile shear load in friction-stir welding of AA6111/AA5023 aluminum alloys, J. Mater. Process. Technol.241 (2017) 112119. DOI: 10.1016/j.jmatprotec.2016.11.007Search in Google Scholar

[18] da Silva, A.A.M.; Arruti, E.; Janeiro, G.; Aldanondo, E.; Alvarez, P.; Echeverria, A.: Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds, Mater. Design32 (2011) 20212027. DOI: 10.1016/j.matdes.2010.11.059Search in Google Scholar

[19] Amini, S.; Amiri, M.R.; Barani, A.: Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy, Int. J. Adv. Manuf. Technol.76 (2015) 255261. DOI: 10.1007/s00170-014-6277-6Search in Google Scholar

[20] Aval, H.J.: Influences of pin profile on the mechanical and microstructural behaviors in dissimilar friction stir welded AA6082-AA7075 butt Joint, Mater. Design67 (2015) 413421. DOI: 10.1016/j.matdes.2014.11.055Search in Google Scholar

[21] Kasman, S.: Analysis of dissimilar friction stir welding process for tensile properties of EN AW 2024 and EN AW 5083, Materialwiss. Werksttech.49 (2018) 714725. DOI: 10.1002/mawe.201700096Search in Google Scholar

[22] Kasman, S.; Yenier, Z.: Analyzing dissimilar friction stir welding of AA5754/AA7075, Int. J. Adv. Manuf. Technol.70 (2014) 145156. DOI: 10.1007/s00170-013-5256-7Search in Google Scholar

[23] Kasman, S.: Multi-response optimization using the Taguchi-based grey relational analysis: a case study for dissimilar friction stir butt welding of AA6082-T6/AA5754-H111, Int. J. Adv. Manuf. Technol.68 (2013) 795804. DOI: 10.1007/s00170-012-4720-0Search in Google Scholar

[24] Krishnaiah, K.; Shahabudeen, P.: Applied Design of Experiments and Taguchi Methods, 2012, PHI Learning Pvt. Ltd., New Delhi.Search in Google Scholar

[25] Liu, S.; Forrest, J.Y.L.: Grey systems: theory and applications, 2010, Springer, Berlin.Search in Google Scholar

[26] Kuo, Y.; Yang, T.; Huang, G.W.: The use of grey relational analysis in solving multiple attribute decision-making problems, Comput. Ind. Eng.55 (2008) 8093. DOI: 10.1016/j.cie.2007.12.002Search in Google Scholar

[27] Prasad, K.S.; Chalamalasetti, S.R.; Damera, N.R.: Application of grey relational analysis for optimizing weld bead geometry parameters of pulsed current micro plasma arc welded inconel 625 sheets, Int. J. Adv. Manuf. Technol.78 (2015) 625632. DOI: 10.1007/s00170-014-6665-ySearch in Google Scholar

[28] Hsiao, Y.F.; Tarng, Y.S.; Huang, W.J.: Optimization of plasma arc welding parameters by using the Taguchi method with the grey relational analysis, Mater. Manuf. Process. 23 (2008) 5158. DOI: 10.1080/10426910701524527Search in Google Scholar

[29] Senthilraja, R.; Sait, A.N.: Optimization of the parameters of friction stir welding for AZ91D magnesium alloy using the Taguchi design, Materials Science, 51 (2015) 180187. DOI: 10.1007/s11003-015-9826-8Search in Google Scholar

[30] Chen, C.H.; Wang, Y.C.; Lee, B.Y.: The effect of surface roughness of end-mills on optimal cutting performance for high-speed machining, Stroj. Vestn-J. Mech. E.59 (2013) 124134. DOI: 10.5545/sv-jme.2012.677Search in Google Scholar

[31] Shi, K.N.; Zhang, D.H.; Ren, J.X.: Optimization of process parameters for surface roughness and microhardness in dry milling of magnesium alloy using Taguchi with grey relational analysis, Int. J. Adv. Manuf. Technol.81 (2015) 645651. DOI: 10.1007/s00170-015-7218-8Search in Google Scholar

[32] Chien, C.H.; Lin, W.B.; Chen, T.P.: Optimal FSW process parameters for aluminum alloys AA5083, J. Chin. Inst. Eng.34 (2011) 99105. DOI: 10.1080/02533839.2011.553024Search in Google Scholar

[33] Acherjee, B.; Kuar, A.S.; Mitra, S.; Misra, D.: Application of grey-based Taguchi method for simultaneous optimization of multiple quality characteristics in laser transmission welding process of thermoplastics, Int. J. Adv. Manuf. Technol.56 (2011) 9951006. DOI: 10.1007/s00170-011-3224-7Search in Google Scholar

[34] Perec, A.; Pude, F.; Kaufeld, M.; Wegener, K.: Obtaining the selected surface roughness by means of mathematical model based parameter optimization in abrasive waterjet cutting, Stroj. Vestn-J. Mech. E.63 (2017) 606613. DOI: 10.5545/sv-jme.2017.4463Search in Google Scholar

[35] ASTM. Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org.Search in Google Scholar

[36] Li, W.Y.; Jiang, R.R.; Zhang, Z.H.; Ma, Y.E.: Effect of rotation speed to welding speed ratio on microstructure and mechanical behavior of friction stir welded aluminum-lithium alloy joints, Adv. Eng. Mater.15 (2013) 10511058. DOI: 10.1002/adem.201300147Search in Google Scholar

Received: 2019-05-22
Accepted: 2020-01-17
Published Online: 2020-07-06
Published in Print: 2020-07-15

© 2020, Carl Hanser Verlag, München

Downloaded on 9.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110608/pdf
Scroll to top button