Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of Al-Mg-Sc Alloy
-
D. Pan
, S. Zhou , Y. Li , Z. Zhan , H. Li und Y. Wu
Abstract
Friction-stir processing (FSP) imposed a remarkable grain refining effect on Al-5Mg-0.2Sc alloy, changing typical dendritic microstructure into fine and equiaxed recrystallized grains. Such effect was found to be related to intense plastic deformation and high-temperature exposure, resulting in occurrence of dynamic recrystallization. During this process, Al3Sc dispersoids due to the addition of 0.2 % Sc in a high density were precipitated and effectively hindered the migration of grain boundaries and subsequent grain growth, giving rise to a significant grain-refining strengthening effect. On the other hand, these Al3Sc precipitates caused an additional substructure strengthening and precipitation strengthening effect. An attractive comprehensive property of Al-5Mg-0.2Sc alloy subjected to FSP was obtained.
Kurzfassung
Das Friction Stir Processing (Rührreibbearbeitung, FSP) bewirkte bei der Legierung Al-5Mg-0,2Sc eine ausgeprägte Kornfeinung. Bei dem Prozess wurde das typische dendritische Gefüge zu feinen und gleichachsigen Körnern hin verändert. Es konnte herausgefunden werden, dass dieser Effekt mit starker plastischer Verformung und dem Einfluss hoher Temperaturen bei dynamischer Rekristallisation in Zusammenhang steht. Während dieses Vorgangs wurde infolge der Zugabe von 0,2 % Sc eine hohe Dichte an Al3Sc-Dispersoiden ausgeschieden, die wirksam die Korngrenzenmigration und das darauffolgende Kornwachstum verhinderten, was wiederum eine deutliche Verfestigungswirkung durch Kornverfeinerung hervorruft. Diese Al3Sc-Ausscheidungen bewirkten andererseits eine zusätzliche Substrukturverfestigung und Ausscheidungshärtung. Bei der mittels FSP bearbeiteten Al-5Mg-0,2Sc-Legierung konnten interessante Eigenschaften erzielt werden.
References / Literatur
[1] Wen, S.; Xing, Z.; Huang, H.; Mater. Sci. Eng. A.516 (2009), 42–4910.1016/j.msea.2009.02.045Suche in Google Scholar
[2] Li, M.; Pan, Q.; Shi, Y.; Mater. Sci. Eng A.611 (2014), 142–15110.1016/j.msea.2014.05.087Suche in Google Scholar
[3] Lathabai, S.; Lloyd, P.; Acta Mater.50 (2002). 4275–429210.1016/S1359-6454(02)00259-8Suche in Google Scholar
[4] Filatov, Y.; Yelagin, V.; Zakharov, V.; Mater. Sci. Eng A.280 (2000), 97–10110.1016/S0921-5093(99)00673-5Suche in Google Scholar
[5] Costa, S.; Puga, H.; Barbosa, J.; Mater. Des.42 (2012), 347–35210.1016/j.matdes.2012.06.019Suche in Google Scholar
[6] Zhang, W.; Ye, Y.; He, L.; Mater. Sci. Eng. A.578 (2013), 35–4510.1016/j.msea.2013.04.067Suche in Google Scholar
[7] Jones, M.; Humphreys, F.; Acta Mater.51 (2003), 2149–215910.1016/S1359-6454(03)00002-8Suche in Google Scholar
[8] Novotny, G.; Ardell, A.; Mater. Sci. Eng. A.318 (2001), 144–15410.1016/S0921-5093(01)01326-0Suche in Google Scholar
[9] Kaiser, M.; Datta, S.; Roychowdhury, A.; Mater. Charact.59 (2008), 1661–166610.1016/j.matchar.2008.03.006Suche in Google Scholar
[10] Zhou, S.A.; Zhang, Z.; Li, M.; Pan, D.J.; Su, H.L.; Du, X.D.Li, P.; Wu, Y.C.; Mater. Des.90 (2016), 1077–108410.1016/j.matdes.2015.10.132Suche in Google Scholar
[11] Pan, D.J.; Zhou, S.A.; Zhang, Z.; Li, M.; Wu, Y.C.; Mater. Sci. Tech.33 (2017), 751–75710.1080/02670836.2016.1270573Suche in Google Scholar
[12] Shaeri, M.; Salehi, M.; Seyyedein, S.; J. Alloys Compds.576 (2013), 350–35710.1016/j.jallcom.2013.05.182Suche in Google Scholar
[13] Quadir, M.; Ferry, M.; Munroe, P.; Scripta Mater.64 (2011), 1106–1109. 10.1016/j.scriptamat.2011.02.032Suche in Google Scholar
[14] Duan, Z.; Liao, X.; Kawasaki, M.; J. Mater. Sci.45 (2010), 4621–463010.1007/s10853-010-4400-0Suche in Google Scholar
[15] Orozco-Caballero, A.; Álvarez-Leal, M.; Verdera, D.; Mater. Des.125 (2017), 116–12510.1016/j.matdes.2017.03.081Suche in Google Scholar
[16] Mishraa, R.; Ma, Z.; Mater. Sci. Eng. R.50 (2005), 1–7810.1016/j.mser.2005.07.001Suche in Google Scholar
[17] Suhuddin, U.; Mironov, S.; Sato, Y.; Mater. Sci. Eng. A.527 (2010), 1962–196910.1016/j.msea.2009.11.029Suche in Google Scholar
[18] Peel, M.; Steuwer, A.; Preuss, M.; Acta Mater.51 (2003), 4791–480110.1016/S1359-6454(03)00319-7Suche in Google Scholar
[19] Tao, Y.; Zhang, Z.; Ni, D.; Mater. Sci. Eng. A.612 (2014), 236–24510.1016/j.msea.2014.06.051Suche in Google Scholar
[20] Su, J.; Nelson, T.; Mishra, R.; Mahoney, M.; Acta Mater.51 (2003), 713–72910.1016/S1359-6454(02)00449-4Suche in Google Scholar
[21] Zhang, Z.; Xiao, B.; Ma, Z.; Mater. Sci. Eng. A.614 (2014), 6–1510.1016/j.msea.2014.06.093Suche in Google Scholar
[22] Jana, S.; Mishra, R.; Baumann, J.; Acta Mater.58 (2010), 989–100310.1016/j.actamat.2009.10.015Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Metallographic Examination of Fine Gold and a Gold-Copper Alloy for Coin Manufacturing
- Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of Al-Mg-Sc Alloy
- Derivation of Property Distribution Images from Microstructural Analyses of X2CrNi18-9 with Regard to Hydrogen Embrittlement
- Condition Monitoring of a Power Tower Using Metallurgical Investigations of Structural Members
- Meeting Diary/Veranstaltungskalender
- Meeting Diary
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Metallographic Examination of Fine Gold and a Gold-Copper Alloy for Coin Manufacturing
- Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of Al-Mg-Sc Alloy
- Derivation of Property Distribution Images from Microstructural Analyses of X2CrNi18-9 with Regard to Hydrogen Embrittlement
- Condition Monitoring of a Power Tower Using Metallurgical Investigations of Structural Members
- Meeting Diary/Veranstaltungskalender
- Meeting Diary