Home Effect of Vanadium and Heat Treatment on the Corrosion Behavior of Ferritic Stainless Steel
Article
Licensed
Unlicensed Requires Authentication

Effect of Vanadium and Heat Treatment on the Corrosion Behavior of Ferritic Stainless Steel

  • Hulya Eren , Mustafa Aksoy , Mehmet H. Korkut and Mehmet Erbil
Published/Copyright: May 5, 2013
Become an author with De Gruyter Brill

Abstract

In this study, the corrosion behavior of ferritic stainless steel with 1 wt. % V was determined by AC impedance technique and mass-loss method. The samples were cast, then shaped by forging. 0.1 M H2SO4 and 0.3 M HCl acid solutions were used as corrosive environments. The samples were classified into three groups. In the first group, samples were unhomogenized, remaining in production condition. The second and third group samples were exposed to homogenization at 1100°C for 30 min or 180 min, respectively, and then quenched. SEM investigations were performed for samples exposed to corrosion for 30 min and 360 min. Subsequently, it was determined that adding vanadium increased corrosion resistance in chloric acid solution but has no helpful effect in sulphuric acid solution, according to AC impedance test results. The mass-loss results showed that vanadium increased corrosion resistance of ferritic stainless steel in both solutions.

Kurzfassung

In der vorliegenden Arbeit wird das Korrosionsverhalten von ferritischem nichtrostendem Stahl mit 1 Gew.-% V durch die AC-Impedanzmethode und die Massenverlustmethode bestimmt. Die Proben wurden gegossen und durch Schmieden umgeformt. Als korrosive Umgebung dienten 0,1 M H2SO4- and 0,3 M HCl-Säure. Die Proben wurden in drei Gruppen klassifiziert. In der ersten Gruppe waren die Proben nicht homogenisiert und verblieben im Produktionszustand. Die zweite und dritte Probengruppe wurde bei 1100°C für 30 bzw. 180 min homogenisiert und danach abgeschreckt. Proben, die der Korrosion für 30 und 360 min ausgesetzt waren, wurden mit dem REM untersucht. Anschließend wurde festgestellt, dass der Zusatz von Vanadium die Korrosionsbeständigkeit in der Salzsäureumgebung erhöhte, aber keinen wirksamen Effekt in der Schwefelsäureumgebung hatte, wie die Ergebnisse der AC-Impedanztests zeigten. Die Ergebnisse des Massenverlustversuchs wiesen darauf hin, dass Vanadium die Korrosionsbeständigkeit von ferritischem nichtrostendem Stahl in beiden Umgebungen verbesserte.


Dr. Hülya Eren received her MSc in mechanical engineering from Firat University in 1998 and complated her PhD at Department of Metallurgy Education, Firat University, in 2005. She has been studying at the Faculty of Technical Education. Her main interests are corrosion, coating and tribology.

Prof. Dr. Mustafa Aksoy 1973 MSc in metallurgical engineering, Istanbul Technical University, 1985 PhD at Firat University, Elaziğ, Turkey. Employment in casting industry for about 6 years. 1979 joining research group at Firat University. His main interests are welding metallurgy, casting defects, tribology and corrosion.


References/Literatur

[1] Voort, G.F.V.; James, H.M.: in K. Mills et al. (eds) ASM Handbook: Metallography and Microstructure, 9 (%1992) 279296Search in Google Scholar

[2] Truman, J.E.; Crawshaw, B.: Proceeding of Conference on stainless steel for the fabricator and user, Birmingham, England1968195204Search in Google Scholar

[3] Dundas, H.J.; Bond, A.P.: Intergranular Corrosion Stainless AlloysSearch in Google Scholar

[4] Steigerwald, R.F.; Dundas, H.J.; Redmod, J.D.; Davison, R.M.: Stainless Steel’77, Climax Molydenum Company, London, England1977 p. 5772Search in Google Scholar

[5] Bond, A.P.: Trans. Met. Soc., AIME245 (1969) 21272134Search in Google Scholar

[6] Demo, J.J.: Handbook Stainless Steels, eds. Peckner, D., Bernstein, I.M., McGraw-Hill, Newyork, NY, USA, 1977Search in Google Scholar

[7] Paton, R.: Iron and Steel Industry of Japon (1998) 38 100710.2355/isijinternational.38.1007Search in Google Scholar

[8] Ras, M.H.; Pistorius, P.C.: Corr. Sci. 44 (2002) 247910.1016/S0010-938X(02)00050-1Search in Google Scholar

[9] R.C.Newman, E.M.Franz: J. Electrochem. Soc. 131 (1984) 22310.1149/1.2115535Search in Google Scholar

[10] Newman, R.C.: Corros. Sci25 (5) (1985) 33110.1016/0010-938X(85)90111-8Search in Google Scholar

[11] Laycock, N.J.; Newman, R.C.: Corros. Sci.39 (1997) 177110.1016/S0010-938X(97)00049-8Search in Google Scholar

[12] Newman, R.C.: Corros. Sci. 25, (1985) 34110.1016/0010-938X(85)90112-XSearch in Google Scholar

[13] Williams, D.E.; Westcott, C.; Fleischmann, M.: in: A.Turnbull (Ed.), Corrosion Chemistry within Pits, Crevices and Cracks, HMSO, London1987, 61Search in Google Scholar

[14] Pistorius, P.C.; Burstein, G.T.; Philos: Trans. Roy. Soc. London Ser. A341 (1992) 53110.1098/rsta.1992.0114Search in Google Scholar

[15] Steinsmo, U.; Isaacs, H.S.: J. Electrochem. Soc. 140 (1993) 64310.1149/1.2056137Search in Google Scholar

[16] Steinsmo, U.; Isaacs, H.S.: Corros. Sci. 35 (1993) 8310.1016/0010-938X(93)90136-5Search in Google Scholar

[17] Aksoy, M.; Yılmaz, O.; Korkut, M.H.: Wear249 (2001) 63910.1016/S0043-1648(01)00686-XSearch in Google Scholar

[18] Eren, H.; Aksoy, M.; Korozyon (2005) 132227Search in Google Scholar

[19] Kuzucu, V.; Aksoy, M.; Korkut, M.H.; J. Mat. Process. Tech. (1998) 82165Search in Google Scholar

[20] Tuken, T.; Arslan, G.; B.Yazıcı; Erbil, M.; Corrosion Sci. (2004) 46/11274310.1016/j.corsci.2004.03.003Search in Google Scholar

[21] Walter, G.W.; Corrosion (1986) 269, 68170310.1016/0010-938X(86)90033-8Search in Google Scholar

Received: 2007-4-2
Accepted: 2007-8-3
Published Online: 2013-05-05
Published in Print: 2008-05-01

© 2008, Carl Hanser Verlag, München

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.100381/html
Scroll to top button