Home Effect of aging on microstructure and mechanical properties of ZnAl15Cu1 alloy for wrought applications
Article
Licensed
Unlicensed Requires Authentication

Effect of aging on microstructure and mechanical properties of ZnAl15Cu1 alloy for wrought applications

  • Didier Rollez , Annalisa Pola , Lorenzo Montesano , Mariangela Brisotto , Daniele De Felicis and Marcello Gelfi
Published/Copyright: May 30, 2017
Become an author with De Gruyter Brill

Abstract

This study investigates the aging behavior of the recently developed ZnAl15Cu1 alloy and its change of mechanical properties with time. Samples obtained from drawn bars were artificially aged at 80 and 220°C for up to several weeks. The mechanical properties were monitored periodically by hardness testing, until a plateau was reached. The microstructural evolution was studied by optical and scanning electron microscope analyses. Bidimensional X-ray diffraction, transmission electron microscopy and selected area electron diffraction experiments were carried out to study the recrystallization phenomena. Nanoindentation measurements were also performed to determine the hardness of the single constituents. It was demonstrated that the aging causes a drop of about 30% in hardness with time. This reduction was related to the recrystallization of the Zn-rich phase network, occurring at both the studied temperatures.


*Correspondence address, Prof. Annalisa Pola, Mechanical and Industrial Engineering Department, University of Brescia, via Branze 38, 25123 Brescia, Italy, E-mail: , Tel.: +390303715576, Fax: +390303702448

References

[1] K.Lohberg: Z. Metallkd.32 (1940) 86.10.1515/ijmr-1940-320403Search in Google Scholar

[2] S.Murphy: Z. Metallkd.71 (1980) 96.10.1515/ijmr-1980-710207Search in Google Scholar

[3] F.Goodwin, A.Ponikvar: Engineering properties of zinc alloys, ILZRO, Durham (1989).Search in Google Scholar

[4] K.J.Altorfer: Met. Prog.122 (1982) 29.10.7142/igakutoshokan.29.122Search in Google Scholar

[5] E.J.K.Kubel: Adv. Mater. Process.132 (1987) 51.10.2307/3971990Search in Google Scholar

[6] K.Hewitt, Y.Wall, in: The Zinc Industry, Woodhead Publishing LimitedCambridge, (2000) 10. PMid:10661533; 10.1016/B978-1-85573-345-9.50016-9Search in Google Scholar

[7] P.Kapranos, D.Brabazon, S.P.Midson, S.Naher, T.Haga, in: Comprehensive Materials Processing, Elsevier Ltd. (2014) 3. 10.1016/B978-0-08-096532-1.00503-3Search in Google Scholar

[8] D.Rollez, A.Pola, F.Prenger: Erzmetall68 (2015) 354.Search in Google Scholar

[9] E.Gervais, R.J.Barnhurst, C.A.Loong: JOM11 (1985) 43. 10.1007/BF03258743Search in Google Scholar

[10] A.Pola, L.Montesano, M.Gelfi, G.M.La Vecchia: Metall. Ital.107 (2015) 37.Search in Google Scholar

[11] F.Porter, in: Zinc handbook: properties, processing and use in design, Marcel Dekker Inc., New York, USA (1991) 72.Search in Google Scholar

[12] T.H.Muster, W.D.Ganther, I.S.Cole: Corros. Sci.49 (2007) 2037. 10.1016/j.corsci.2006.10.007Search in Google Scholar

[13] M.Kawasaki, T.G.Langdon: Mater. Trans.49 (2008) 84. 10.2320/matertrans.ME200720Search in Google Scholar

[14] M.R.Azpeitia, E.E.M.Flores, G.T.Villaseñor: J. Mater. Sci.47 (2012) 6206. 10.1007/s10853-012-6494-zSearch in Google Scholar

[15] http://www.zinc.org/basics/.Search in Google Scholar

[16] RoHS II Directive 2011/65/EU.Search in Google Scholar

[17] C.F.Yang, J.H.Pan, T.H.Lee: J. Alloys Compd.468 (2009) 230. 10.1016/j.jallcom.2008.01.067Search in Google Scholar

[18] Y.H.Zhu: Met. Mater. Int.4 (1998) 878. 10.1007/BF03026416Search in Google Scholar

[19] Y.H.Zhu, J.J.Islas: J. Mater. Process. Technol.66 (1997) 244. 10.1016/S0924-0136(96)02532-0Search in Google Scholar

[20] M.Lopez-Hirata, M.S.Munoz, J.C.R.Hernandes, Y.H.Zhu: Mater. Sci. Eng. A-Struct.247 (1998) 8. 10.1016/S0921-5093(98)00480-8Search in Google Scholar

[21] L.Montesano, A.Pola, M.Gelfi, G.M.La Vecchia: Procedia Eng.109 (2015) 228. 10.1016/j.proeng.2015.06.221Search in Google Scholar

[22] T.Savaşkan, A.P.Hekimoğlu: Mater. Sci. Eng. A-Struct.603 (2014) 52. 10.1016/j.msea.2014.02.047Search in Google Scholar

[23] T.Savaşkan, A.P.Hekimoğlu: Int. J. Mater. Res.107 (2016) 646. 10.3139/146.111390Search in Google Scholar

[24] J.C.T.Farge, M.W.Williams: Can. Metall. Quart.5 (1966) 265. 10.1179/cmq.1966.5.4.265Search in Google Scholar

[25] F.E.Goodwin, L.Kallien: SAE Int. J. Mater. Manuf.4 (2011) 1188. 10.4271/2011-01-1082Search in Google Scholar

[26] Y.H.Zhu: J. Mater. Sci.36 (2001) 3973. 10.1023/A:1017978407093Search in Google Scholar

[27] Y.H.Zhu, R.M.Hernades, B.Banos: J. Mater. Sci.34 (1999) 3653. 10.1023/A:1004695120435Search in Google Scholar

[28] G.Gottardi, A.Pola, G.M.La Vecchia: Metall. Ital.107 (2015) 11.Search in Google Scholar

[29] M.Tisza, in: Physical Metallurgy for Engineers, ASM International, Ohio, USA (2001) 153.Search in Google Scholar

[30] A.Pola, M.Gelfi, L.E.Depero, R.Roberti: Eng. Fail. Anal.15 (2008) 54. 10.1016/j.engfailanal.2007.01.004Search in Google Scholar

[31] D.Apelian, M.Paliwal, D.C.Herrschaft: JOM33 (1981) 12. 10.1007/BF03339527Search in Google Scholar

Received: 2016-11-11
Accepted: 2017-03-20
Published Online: 2017-05-30
Published in Print: 2017-06-12

© 2017, Carl Hanser Verlag, München

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111502/html?lang=en
Scroll to top button