Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
-
Walter Michaeli
and Fabian Preller
Abstract
The strength analysis of continuous fibre reinforced plastics has to consider the reactions of the heterogeneous composite material. Ample uncertainties exist in the evaluation of fibre parallel compressive load, because no computation model has yet accomplished acceptance which on the one hand is physically fundamentally feasible and on the other hand works on the macroscopical level of the common design process.
This paper deals with the combination of a physically based failure model and a suitable modelling of the complex elastic properties. The results of this model combination are overall plausible. Additionally, experimental data confirm that moderate fibre transverse compression leads to an increase in the fibre parallel compressive strength.
References
[1] H.Schürmann: Konstruieren mit Faser-Matrix-Verbunden, Springer-Verlag, Berlin (2005).10.1007/b137636Search in Google Scholar
[2] M.Knops: Analysis of Failure in Fiber Polymer Laminates, Springer-Verlag, Berlin (2008).Search in Google Scholar
[3] K.K.U.Stellbrink: Micromechanis of Composites, Hanser-Verlag, Munich (1996).Search in Google Scholar
[4] S.H.Lee, A.M.Waas: Int. J. Fracture100 (1999) 275.10.1023/A:1018779307931Search in Google Scholar
[5] S.T.Pinho, L.Iannucci, P.Robinson: Composites A37 (2006) 63.10.1016/j.compositesa.2005.04.016Search in Google Scholar
[6] J.Wiegand, N.Petrinic: Proc. 17th Int. Conf. Comp. Mat., Edinburgh, UK (2009).Search in Google Scholar
[7] C.Matthek: Design in der Natur, Rombach-Verlag, Freiburg (1997).Search in Google Scholar
[8] M. AhmerWadee, G.W.Hunt, M.A.Peletier: J. Mech. Phys. Solids52 (2004) 1071.10.1016/j.jmps.2003.09.026Search in Google Scholar
[9] F.D.Fischer, H.Clemens, T.Schaden, F.Appel: Int. J. Mat. Res.98 (2007) 1041.Search in Google Scholar
[10] S.R.Kalidindi, T.Zhen, M.W.Barsoum: Mat. Sci. Eng. A418 (2006) 95.10.1016/j.msea.2005.11.043Search in Google Scholar
[11] T.Schaden, F.D.Fischer, H.Clemens, F.Appel, A.Bartels: Adv. Eng. Mat.8 (2006) 1109.10.1002/adem.200600238Search in Google Scholar
[12] A.S.Argon: Treatise of Mat. Sci. and Tech.1 (1972) 79.10.1016/B978-0-12-341801-2.50007-2Search in Google Scholar
[13] B.Budiansky, N.A.Fleck, J.C.Amazogo: J. Mech. Phys. Solids46 (1998) 1637.10.1016/S0022-5096(97)00042-2Search in Google Scholar
[14] B.Budiansky: Comp. and Struct.16 (1983) 3.10.1016/0045-7949(83)90141-4Search in Google Scholar
[15] P.M.Jelf, N.A.Fleck: J. Comp. Mat.26 (1992) 2706.10.1177/002199839202601804Search in Google Scholar
[16] D.Liu, N.A.Fleck, M.P.F.Sutcliffe: J. Mech. Phys. Solids52 (2004) 1481.10.1016/j.jmps.2004.01.005Search in Google Scholar
[17] C.G.DávilaP.P.Camanho, C.A.Rose: J. Comp. Mat.39 (2005) 323.Search in Google Scholar
[18] S.T.Pinho, C.G.Dávila, P.P.Camanho, L.Iannucci, P.Robinson: Failure Models and Criteria for FRP Under In-Plane or Three-Dimensional Stress States Including Shear Non-Linearity, National Aeronautics and Space Administration, Washington, USA (2005)Search in Google Scholar
[19] M.J.Pindera, C.T.Herakovich: Proc. 2nd USA-USSR Symp. Fracture of Comp. Mat., Bethlehem, PA, USA (1982).Search in Google Scholar
[20] S.R.Swanson, M.J.Messick, Z.Tian: J. Comp. Mat.21 (1987) 619.10.1177/002199838702100703Search in Google Scholar
[21] A.Puck, M.Mannigel: Comp. Sci. and Tech.67 (2007) 1955.10.1016/j.compscitech.2006.10.008Search in Google Scholar
[22] A.Puck, H.Schürmann: Comp. Sci. and Tech.58 (1998) 1045.10.1016/S0266-3538(96)00140-6Search in Google Scholar
[23] W.Michaeli, F.Preller, A.Krafzick: Z. Kunststofftechnik6 (2010) 138.Search in Google Scholar
[24] L.J.Hart-Smith: Comp. Sci. and Tech.58 (1998) 1151.10.1016/S0266-3538(97)00192-9Search in Google Scholar
[25] M.J.Hinton, A.S.Kaddour, P.D.Soden: Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise, Elsevier, Oxford (2004).Search in Google Scholar
[26] N.N.: VDI-Guideline 2014 Part 3: Development of FRP components: Analysis, Beuth, Düsseldorf (2006).Search in Google Scholar
[27] S.W.Tsai, E.M.Wu: J. Comp. Mat.5 (1971) 58.10.1177/002199837100500106Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial January 2012
- Original Contributions
- High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
- Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
- Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
- Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
- Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
- Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
- Influence of creep and cyclic oxidation in thermal barrier coatings
- Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
- Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
- Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
- Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
- Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
- Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
- Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
- Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
- Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial January 2012
- Original Contributions
- High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
- Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
- Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
- Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
- Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
- Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
- Influence of creep and cyclic oxidation in thermal barrier coatings
- Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
- Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
- Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
- Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
- Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
- Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
- Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
- Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
- Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
- DGM News
- DGM News