Home Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
Article
Licensed
Unlicensed Requires Authentication

Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading

  • Domnin Gelmedin and Karl-Heinz Lang
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Materials for turbine blades experience in service a combined loading of low and high cycle fatigue at high temperatures. In order to understand the failure behaviour under these loading conditions, systematic investigations were carried out. Low cycle fatigue, high cycle fatigue and combined low and high cycle fatigue tests were realised on MAR-M247 LC at 650 °C in an air environment under total strain control. Surface damage and fracture surfaces were analysed. Under combined low and high cycle fatigue, the lifetime is reduced if the low cycle fatigue leads to a degradation of the high cycle fatigue strength caused by crack initiation and crack growth. By analysing the fracture surface, the crack growth rate under combined cycle fatigue loading could be determined and it was significantly higher than under pure low cycle fatigue loading. The accelerated crack growth mainly causes the lifetime reduction.


* Dipl.-Ing. Domnin Gelmedin, Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Campus Süd, Engelbert-Arnold-Straße 4, D-76131 Karlsruhe, Germany. Tel.: +49 721 608-46595, Fax: +49 721 608-48044, E-mail:

Dedicated to Prof. Dr.-Ing. Christina Berger on the occasion of her 65th birthday


References

[1] V.I.Trufyakov, V.S.Koval'chuk: Strength of Materials14 (1982) 1165.10.1007/BF00779928.http://dx.doi.org/10.1007/BF00779928Search in Google Scholar

[2] T.Tanaka: Bull. J. Soc. Mech. Eng.11 (1968) 77.10.1299/jsme1958.11.77Search in Google Scholar

[3] D.Gelmedin, K.-H.Lang: Procedia Engng., 2 (2010) 1343.10.1016/j.proeng.2010.03.146Search in Google Scholar

[4] B.E.Powell, T.V.Duggan, R.Jeal: Int. J. Fat.4 (1982) 4.10.1016/0142-1123(82)90015-9Search in Google Scholar

[5] B.E.Powell, T.V.Duggan: Int. J. Fat.8 (1986) 187.10.1016/0142-1123(86)90020-4Search in Google Scholar

[6] B.E.Powell, T.V.Duggan: Int. J. Fat.9 (1987) 195.10.1016/0142-1123(87)90021-1Search in Google Scholar

[7] B.E.Powell, M.Hawkyard, L.Grabowski: Int. J. Fat.19 (1997) 167.10.1016/S0142-1123(97)00016-9Search in Google Scholar

[8] T.Nicholas: High Cycle Fatigue, Elsevier (2006).Search in Google Scholar

[9] J.Ding, R.F.Hall, J.Byrne, J.Tong: Int. J. Fat.29 (2007) 1339.10.1016/j.ijfatigue.2006.10.020Search in Google Scholar

[10] C.Schweizer, T.Seifert, B.Nieweg, P.von Hartrott, H.Riedel: Int. J. Fat.33 (2011) 194.10.1016/j.ijfatigue.2010.08.008Search in Google Scholar

[11] J.-Y.Guedou, J.-M.Rongvaux, in: H.D. Solomon, G.R. Halford, L.R. Kaisand, B.N. Leis (Eds.) Low Cycle Fatigue, ASTM STP 942, Philadelphia (1988) 938.Search in Google Scholar

[12] D.Gelmedin, K.-H.Lang, in: J. Lecomte-Beckers et al. (Eds.), Proc. of the 9th Liège Conf. on Mat. for Advanced Power Engng. (2010), Liège, Belgium. Forschungszentrum Jülich, Germany, ISBN 978-3-89336-685-9, 844.Search in Google Scholar

[13] R.G.Forman, V.Shivakumar, in: J.H.Underwood, R.Chait, C.W.Smith, D.P.Wilhelm, W.A.Andrews, J.C.Newman (Eds.), Fracture Mechanics Vol. 17, ASTM STP 905, Philadelphia (1986), 59.Search in Google Scholar

[14] ASTM Standard E647-05, ASTM International, West Conshohocken, PA (2005).Search in Google Scholar

[15] P.Heuler, J.W.Bergmann: LCF von Turbinenrädern, FVV-Report No. 546–2, Frankfurt (1994).Search in Google Scholar

[16] L.Kunz, P.Lukáš, R.Mintách, K.Hrbáček: Kovove Mater.44 (2006) 275.Search in Google Scholar

[17] P.Heuler, J.W.Bergmann, M.Vormwald, in: G. Lütjering, H. Nowack (Eds.), Proc. of the 6th Int. Fatigue Congress, Berlin (1996) 1165.10.1016/B978-008042268-8/50067-8Search in Google Scholar

[18] H.Kitagawa, S.Takahashi, Proc. of 2nd Int. Conference on Mechanical Behaviour of Materials, Boston (1976) 627.Search in Google Scholar

[19] Y.Yamada, J.C.NewmanJr.: Engng. Fract. Mech.76 (2009) 209.10.1016/j.engfracmech.2008.09.009Search in Google Scholar

[20] M.H.El Haddad, K.N.Topper, T.H.Smith: J. Eng. Mater. Technol.101 (1979) 42.10.1115/1.3443647Search in Google Scholar

[21] S.Mall, T.Nicholas, T.-W.Park: Int. J. Fat.25 (2003) 1109.10.1016/S0142-1123(03)00116-6Search in Google Scholar

[22] V.Zitounis and P.E.Irving: Int. J. Fat.29 (2007) 108.10.1016/j.ijfatigue.2006.02.048Search in Google Scholar

[23] S.M.Russ: Int. J. Fat.27 (2005) 1628.10.1016/j.ijfatigue.2005.07.032Search in Google Scholar

[24] G.König, E.E.Affeldt, in: K.T. Rie (Ed.), Proc. 2nd Conf. On Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Elsevier, London (1987) 673.10.1007/978-94-009-3459-7_104Search in Google Scholar

[25] W.Wei, H.Flöge, E.E.Affeldt, Scr. Metall. et Mater.25 (1991) 1757.10.1016/0956-716X(91)90300-PSearch in Google Scholar

Received: 2011-9-8
Accepted: 2011-10-19
Published Online: 2013-06-11
Published in Print: 2012-01-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial January 2012
  5. Original Contributions
  6. High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
  7. Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
  8. Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
  9. Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
  10. Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
  11. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
  12. Influence of creep and cyclic oxidation in thermal barrier coatings
  13. Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
  14. Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
  15. Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
  16. Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
  17. Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
  18. Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
  19. Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
  20. Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
  21. Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
  22. DGM News
  23. DGM News
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110633/pdf
Scroll to top button