High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
-
Matthias Hockauf
, Martin Franz-Xaver Wagner , Manja Händel , Thomas Lampke , Steve Siebeck and Bernhard Wielage
Abstract
High-strength materials on the basis of aluminum are attractive candidates for use in applications such as safety components that require high strength, high quality and integrity of various properties. In this paper, we discuss recent improvements in terms of property optimization made in the fields of (1) ultrafine-grained aluminum alloys prepared by equal-channel angular pressing, and (2) aluminum matrix composites with particle reinforcement. We discuss microstructural aspects and mechanical properties, as well as technological (processing parameters), wear and corrosion behavior. Our results highlight recent — and potential for further — improvements and for future applications of high-strength, aluminum-based materials.
References
[1] R.Z.Valiev, Y.Estrin, Z.Horita, T.G.Langdon, M.J.Zehetbauer, Y.T.Zhu: JOM-J Min. Met. Mat. S.58 (2006) 33.10.1007/s11837-006-0213-7Search in Google Scholar
[2] D.A.Hughes, N.Hansen: Acta Mater.45 (1997) 3871.10.1016/S1359-6454(97)00027-XSearch in Google Scholar
[3] F.B.Prinz, A.S.Argon: Acta Metall. Mater.32 (1984) 1021.10.1016/0001-6160(84)90004-XSearch in Google Scholar
[4] H.Mughrabi: Acta Metall. Mater.31 (1983) 1367.10.1016/0001-6160(83)90007-XSearch in Google Scholar
[5] P.L.Sun, P.W.Kao, C.P.Chang: Scripta Mater.51 (2004) 565.10.1016/j.scriptamat.2004.05.031Search in Google Scholar
[6] M.Furukawa, Z.Horita, T.G.Langdon: Adv. Eng. Mater.3 (2001) 121.10.1002/1527-2648(200103)3:3<121::AID-ADEM121>3.0.CO;2-VSearch in Google Scholar
[7] T.Sakai, H.Miura, X.Yang: Mater. Sci. Eng. A499 (2009) 2.10.1016/j.msea.2007.11.098Search in Google Scholar
[8] C.Xu, M.Furukawa, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A398 (2005) 66.10.1016/j.msea.2005.03.083Search in Google Scholar
[9] K.Oh-ishi, A.P.Zhilyaev, T.R.McNelley: Mater. Sci. Eng. A410–411 (2005) 183.10.1016/j.msea.2005.08.144Search in Google Scholar
[10] V.M.Segal, A.E.Reznikov, A.E.Drobyshevskiy, V.I.Kopylov: Russ. Metall. (engl. translation) (1981) 7.Search in Google Scholar
[11] L.W.Meyer, M.Hockauf, B.Zillmann, I.Schneider: Int. J. Mater. For., 2 (2009) 61.10.1007/S12289-009-0545-2Search in Google Scholar
[12] Y.Iwahashi, J.T.Wang, Z.Horita, M.Nemoto, T.G.Langdon: Scripta Mater.35 (1996) 143.10.1016/1359-6462(96)00107-8Search in Google Scholar
[13] P.L.Sun, P.W.Kao, C.P.Chang: Metall. and Mater. Trans. A35 (2004) 1359.10.1007/s11661-004-0311-5Search in Google Scholar
[14] A.Gholinia, P.B.Prangnell, M.V.Markushev: Acta Mater.48 (2000) 1115.10.1016/S1359-6454(99)00388-2Search in Google Scholar
[15] R.Lapovok: Mater. Sci. Forum503–504 (2006) 37.10.4028/www.scientific.net/MSF.503-504.37Search in Google Scholar
[16] M.Hockauf, L.Meyer: J. Mater. Sci.45 (2010) 4778.10.1007/s10853-010-4595-0Search in Google Scholar
[17] V.M.Segal: Mater. Sci. Eng. A386 (2004) 269.10.1016/j.msea.2004.07.023Search in Google Scholar
[18] J.P.Mathieu, S.Suwas, A.Eberhardt, L.S.Tóth, P.Moll: J. Mater. Proc. Tech.173 (2006) 29.10.1016/j.jmatprotec.2005.11.007Search in Google Scholar
[19] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar
[20] R.Pippan, F.Wetscher, M.Hafok, A.Vorhauer, I.Sabirov: Adv. Eng. Mater.8 (2006) 1046.10.1002/adem.200600133Search in Google Scholar
[21] V.I.Kopylov, V.N.Chuvil'deev, in: B.S.Altan (Ed.), Severe Plastic Deformation: Toward Bulk Production of Nanocrystalline Materials, Nova Science Publisher, New York (2006) 37.Search in Google Scholar
[22] N.Q.Chinh, G.Horvath, Z.Horita, T.G.Langdon: Acta Mater.52 (2004) 3555.10.1016/j.actamat.2004.04.009Search in Google Scholar
[23] Z.Horita, T.Fujinami, M.Nemoto, T.G.Langdon: Metall. and Mater. Trans. A31 (2000) 691.10.1007/s11661-000-0011-8Search in Google Scholar
[24] S.Cheng, Y.H.Zhao, Y.T.Zhu, E.Ma: Acta Mater.55 (2007) 5822.10.1016/j.actamat.2007.06.043Search in Google Scholar
[25] Y.M.Wang, E.Ma, R.Z.Valiev, Y.T.Zhu: Adv. Mater.16 (2004) 328.10.1002/adma.200305679Search in Google Scholar
[26] J.K.Kim, H.G.Jeong, S.I.Hong, Y.S.Kim, W.J.Kim: Scripta Mater.45 (2001) 901.10.1016/S1359-6462(01)01109-5Search in Google Scholar
[27] M.Cai, D.P.Field, G.W.Lorimer: Mater. Sci. Eng. A373 (2004) 65.10.1016/j.msea.2003.12.035Search in Google Scholar
[28] Y.H.Zhao, X.Z.Liao, Z.Jin, R.Z.Valiev, Y.T.Zhu: Acta Mater.52 (2004) 4589.10.1016/j.actamat.2004.06.017Search in Google Scholar
[29] J.Gubicza, I.Schiller, N.Q.Chinh, J.Illy, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A460–461 (2007) 77.10.1016/j.msea.2007.01.001Search in Google Scholar
[30] S.Divinski, G.Wilde: Mater. Sci. Forum584–586 (2008) 1012.10.4028/www.scientific.net/MSF.584-586.1012Search in Google Scholar
[31] M.Hockauf, L.W.Meyer, B.Zillmann, M.Hietschold, S.Schulze, L.Krüger: Mater. Sci. Eng. A503 (2009) 167.10.1016/j.msea.2008.02.051Search in Google Scholar
[32] K.Hockauf, L.Meyer, M.Hockauf, T.Halle: J. Mater. Sci.45 (2010) 4754.10.1007/s10853-010-4544-9Search in Google Scholar
[33] M.Hockauf, L.W.Meyer, D.Nickel, G.Alisch, T.Lampke, B.Wielage, L.Krüger: J. Mater. Sci.43 (2008) 7409.10.1007/s10853-008-2724-9Search in Google Scholar
[34] L.W.Meyer, R.Schönherr, M.Hockauf: J. Phys. Conf. Ser. 240 (2010) 012123.10.1088/1742-6596/240/1/012123Search in Google Scholar
[35] R.Z.Valiev, I.P.Semenova, E.Jakushina, V.V.Latysh, H.J.Rack, T.C.Lowe, J.Petruželka, L.Dluhoš, D.Hrušák, J.Sochová: Mater. Sci. Forum584–586 (2008) 49.10.4028/www.scientific.net/MSF.584-586.49Search in Google Scholar
[36] S.Ferrasse, V.M.Segal, F.Alford, S.Strothers, J.Kardokus, S.Grabmeier, J.Evans, in: B.S.Altan (Ed.) Severe Plastic Deformation: Toward Bulk Production of Nanocrystalline Materials, Nova Science Publisher, New York (2006) 585.Search in Google Scholar
[37] P.K.Chaudhury, B.Cherukuri, R.Srinivasan: Mater. Sci. Eng. A410–411 (2005) 316.10.1016/j.msea.2005.08.023Search in Google Scholar
[38] P.Frint, M.Hockauf, T.Halle, G.Strehl, T.Lampke, M.F.X.Wagner: Mater. Sci. Forum667–669 (2011) 1153.10.4028/www.scientific.net/MSF.667-669.1153Search in Google Scholar
[39] J.S.Benjamin, P.S.Gilman: Sci. Am.234 (1976) 40.10.1038/scientificamerican0576-40Search in Google Scholar
[40] C.C.Koch: Annu. Rev. Mater. Sci.19 (1989) 121.10.1146/annurev.ms.19.080189.001005Search in Google Scholar
[41] C.C.Koch, J.D.Whittenberger: Intermetallics4 (1996) 339.10.1016/0966-9795(96)00001-5Search in Google Scholar
[42] C.Suryanarayana: Prog. Mater. Sci.46 (2001) 1.10.1016/S0079-6425(99)00010-9Search in Google Scholar
[43] M.Schoenitz, T.S.Ward, E.L.Dreizin: P. Combust. Inst.30 (2005) 2071.10.1016/j.proci.2004.08.134Search in Google Scholar
[44] W.Schatt, B.Kieback, K.-P.Wieters: Pulvermetallurgie, 2. Auflage, Springer-Verlag, Berlin (2007).10.1007/978-3-540-68112-0Search in Google Scholar
[45] C.Suryanarayana: Mechanical alloying and milling, Marcel Dekker, New York (2004).10.1201/9780203020647Search in Google Scholar
[46] H.Zoz, D.Ernst, R.Reichardt, H.Ren, T.Mizutani: Mater. Manuf. Process.14 (1999) 6.10.1080/10426919908914878Search in Google Scholar
[47] D.Nestler, S.Siebeck, H.Podlesak, S.Wagner, M.Hockauf, B.Wielage, in: M.Fathi, A.Holland, F.Ansari, C.Weber (Eds.), Integrated Systems, Design and Technology, Springer-Verlag, Berlin (2011) 93.10.1007/978-3-642-17384-4_9Search in Google Scholar
[48] B.Wielage, D.Nestler, S.Siebeck, H.Podlesak: Materialwiss. Werkst.41 (2010) 476.10.1002/mawe.201000629Search in Google Scholar
[49] H.Podlesak, S.Siebeck, S.Mücklich, M.Hockauf, L.W.Meyer, B.Wielage, D.Weber: Materialwiss. Werkst.40 (2009) 500.10.1002/mawe.200900495Search in Google Scholar
[50] N.Chawla, Y.L.Shen: Adv. Eng. Mater.3 (2001) 357.10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-ISearch in Google Scholar
[51] B.Bobić, S.Mitrović, M.Babić, I.Bobić: Tribol. Indust.32 (2010) 3.Search in Google Scholar
[52] D.Nickel, G.Alisch, H.Podlesack, M.Hockauf, G.Fritsche, T.Lampke: Rev. Adv. Mater. Sci.25 (2010) 261.Search in Google Scholar
[53] R.L.Deuis, C.Subramanian, J.M.Yellup: Wear201 (1996) 132.10.1016/S0043-1648(96)07228-6Search in Google Scholar
[54] R.L.Deuis, C.Subramanian, J.M.Yellup: Compos. Sci. and Technol.57 (1997) 415.10.1016/S0266-3538(96)00167-4Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial January 2012
- Original Contributions
- High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
- Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
- Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
- Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
- Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
- Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
- Influence of creep and cyclic oxidation in thermal barrier coatings
- Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
- Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
- Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
- Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
- Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
- Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
- Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
- Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
- Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial January 2012
- Original Contributions
- High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
- Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
- Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
- Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
- Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
- Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
- Influence of creep and cyclic oxidation in thermal barrier coatings
- Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
- Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
- Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
- Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
- Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
- Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
- Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
- Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
- Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
- DGM News
- DGM News