Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
-
Christoph Linck
, Emanuel Ionescu , Benjamin Papendorf , Dagmar Galuskova , Duŝan Galusek , Pavol Ŝajgalík and Ralf Riedel
Abstract
Silicon oxycarbide-based ceramic nanocomposites (SiOC, SiZrOC and SiHfOC) were prepared by means of hot pressing techniques and their behavior upon hydrothermal corrosion at moderate temperatures (up to 250°C) was investigated. The results indicated linear corrosion behavior for all samples. The corrosion rates of the SiOC ceramic materials were found to be remarkably lower than those of silicon carbide and comparable to values reported for silicon nitride. Furthermore, SiZrOC and SiHfOC were found to show improved resistance with respect to the non-modified SiOC, due to a unique synergistic effect: whereas zirconia/hafnia act as “reinforcing” phases with respect to hydrothermal corrosion (due to their extremely low solubility in water under the testing conditions), the silicon oxycarbide matrix protects the MO2 phase from a corrosion-induced t-MO2 → m-MO2 phase transformation. Consequently, the prepared silicon oxycarbide-based materials exhibit high potential for applications which require high resistance in corrosive media at moderate temperatures.
References
[1] Y.G.Gogotsi, V.A.Lavrenko, in: Corrosion of High-Performance Ceramics, Springer Verlag, Berlin, Germany (1992).10.1007/978-3-642-77390-7Search in Google Scholar
[2] K.G.Nickel, B.Seipel: J. Mater. Res.7 (2004) 125.10.1590/S1516-14392004000100017Search in Google Scholar
[3] K.Hagen: J. Am. Ceram. Soc.93 (2010) 1501.10.1111/j.1551-2916.2010.03839.xSearch in Google Scholar
[4] C.A.Lewinsohn, M.Singh, C.H.HenagerJr.: Ceram. Trans.138 (2003) 201.Search in Google Scholar
[5] P.Colombo, G.Mera, R.Riedel, GD.Soraru: J. Am. Ceram. Soc.93 (2010) 1805.Search in Google Scholar
[6] E.Ionescu, C.Linck, C.Fasel, M.Müller, H.-J.Kleebe, R.Riedel: J. Am. Ceram. Soc.93 (2010) 241.10.1111/j.1551-2916.2009.03395.xSearch in Google Scholar
[7] E.Ionescu, B.Papendorf, H.-J.Kleebe, F.Poli, K.Müller, R.Riedel: J. Am. Ceram. Soc.93 (2010) 1774.10.1111/j.1551-2916.2009.03395.xSearch in Google Scholar
[8] E.Ionescu, B.Papendorf, H.-J.Kleebe, R.Riedel: J. Am. Ceram. Soc.93 (2010) 1783.10.1111/j.1551-2916.2009.03395.xSearch in Google Scholar
[9] R.Riedel, A.Kienzle, W.Dressler, L.Ruwisch, J.Bill, F.Aldinger: Nature382 (1996) 796.10.1038/382796a0Search in Google Scholar
[10] Z.Wang, F.Aldinger, R.Riedel: J. Am. Ceram. Soc.84 (2001) 2179.10.1111/j.1151-2916.2001.tb00984.xSearch in Google Scholar
[11] G.Chollon, in P.Colombo, R.Riedel, G.D.Soraru, H.-J.Kleebe (Eds.) Polymer Derived Ceramics. From Nano-Structure to Applications, DEStech, Lancaster, PA, USA (2010).Search in Google Scholar
[12] J.Rodrigues-Carvajal: Phys. B192 (1993) 55.10.1016/0921-4526(93)90108-ISearch in Google Scholar
[13] P.Karen, P.M.Woodward, J. Solid State Chem.141 (1998) 78.10.1006/jssc.1998.7918Search in Google Scholar
[14] P.Colombo, G.Mera, R.Riedel, G.D.Soraru: J. Am. Ceram. Soc.93 (2010) 1805.Search in Google Scholar
[15] R.Riedel, E.Ionescu (Eds.), Special Triple Issue “Preceramic Polymers”, Soft. Mater.4 (2006) 105.Search in Google Scholar
[16] P.Greil, M.Seibold: J. Mater. Sci.27 (1992) 1053.10.1007/BF01197660Search in Google Scholar
[17] P.Greil: J. Am. Ceram. Soc.78 (1995) 835.10.1111/j.1151-2916.1995.tb08404.xSearch in Google Scholar
[18] P.Greil: J. Eur. Ceram. Soc.18 (1998) 1905.10.1016/S0955-2219(98)00129-0Search in Google Scholar
[19] R.Riedel, G.Passing, H.Schönfelder, R.J.Brook: Nature355 (1992) 714.10.1038/355714a0Search in Google Scholar
[20] S. MartinezCrespiera, E.Ionescu, H.-J.Kleebe, R.Riedel: J. Eur. Ceram. Soc.31 (2011) 913.10.1016/j.jeurceramsoc.2010.11.019Search in Google Scholar
[21] N.Janakiraman, F.Aldinger: J. Eur. Ceram. Soc.29 (2009) 163.10.1016/j.jeurceramsoc.2008.05.028Search in Google Scholar
[22] S.Ishihara, H.Gu, J.Bill, F.Aldinger, F.Wakai: J. Am. Ceram. Soc.85 (2002) 1706.10.1111/j.1151-2916.2002.tb00339.xSearch in Google Scholar
[23] M.Esfehanian, R.Oberacker, T.Fett, M.J.Hoffmann: J. Am. Ceram. Soc.91 (2008) 3803.10.1111/j.1551-2916.2008.02730.xSearch in Google Scholar
[24] K.G.Nickel, Y.G.Gogotsi, in: R.Riedel (Ed.) Handbook of Ceramic Hard Materials, Wiley VCH, Weinheim, Germany (2000).Search in Google Scholar
[25] T.Sato, T.Murakami, T.Endo, M.Shimada, K.Komeya, T.Kameda, M.Komatsu: J. Mater. Sci.26 (1991) 1749.10.1007/BF00543597Search in Google Scholar
[26] T.Kraft, KG.Nickel, YG.Gogotsi: J. Mater. Sci.33 (1998) 4357.10.1023/A:1004480814477Search in Google Scholar
[27] M.Yoshimura, J.-I.Kase, S.Somiya: J. Mater. Res.1 (1986) 100.10.1557/JMR.1986.0100Search in Google Scholar
[28] K.Oda, T.Yoshio: J. Mater. Sci. Lett.13 (1994) 1454.10.1007/BF00419133Search in Google Scholar
[29] H.Wakabayashi, M.Tomozawa: J. Am. Ceram. Soc.72 (1989) 1850.10.1111/j.1151-2916.1989.tb05990.xSearch in Google Scholar
[30] P.Xu, S.J.Yates, J.C.Nino: J. Composite Mater.44 (2010) 1533.10.1177/0021998309357086Search in Google Scholar
[31] G.Perera, R.H.Doremus: J. Am. Ceram. Soc.74 (1991) 1269.10.1111/j.1151-2916.1991.tb04096.xSearch in Google Scholar
[32] K.G.Nickel, Y.G.Gogotsi: Key Eng. Mater.113 (1996) 15.10.4028/www.scientific.net/KEM.113.15Search in Google Scholar
[33] H.Hirayama, T.Kawakubo, A.Goto, T.Kaneko: J. Am. Ceram. Soc.72 (1989) 2049.10.1111/j.1151-2916.1989.tb06029.xSearch in Google Scholar
[34] R.Harshe, C.Balan, R.Riedel: J. Eur. Ceram. Soc.24 (2004) 3471.10.1016/j.jeurceramsoc.2003.10.016Search in Google Scholar
[35] M.Herrmann, J.Schilm, G.Michael, J.Meinhardt, R.Flegler: J. Eur. Ceram. Soc.23 (2003) 585.10.1016/S0955-2219(02)00303-5Search in Google Scholar
[36] K.Oda, T.Yoshio, Y.Miyamoto, M.Koizumi: J. Am. Ceram. Soc.76 (1993) 1365.10.1111/j.1151-2916.1993.tb03768.xSearch in Google Scholar
[37] L.Qiu, D.A.Guzonas, DG.Webb: J. Sol. Chem.38 (2009) 857.10.1007/s10953-009-9412-5Search in Google Scholar
[38] Y.V.Morachevsky, M.M.Piryutko: Russ. Chem. Bull.5 (1956) 917.10.1007/BF01166404Search in Google Scholar
[39] R.O.Furnier, J.J.Rowe: Amer. Mineralogist62 (1977) 1052.Search in Google Scholar
[40] T.Kobayashi, T.Sasaki, I.Takagi, H.Moriyama: J. Nucl. Sci. Tech.44 (2007) 90.10.3327/jnst.44.90Search in Google Scholar
[41] D.Rai, Y.Xia, N.J.Hess, D.M.Strachan, B.P.McGrail: J. Solution Chem.30 (2001) 949.10.1023/A:1013337925441Search in Google Scholar
[42] N.Q.Minh: J. Am. Ceram. Soc.76 (1993) 563.10.1111/j.1151-2916.1993.tb03645.xSearch in Google Scholar
[43] K.Kobayashi, H.Kuwajima, T.Masaki: Solid State Ionics3-4 (1981) 489.10.1016/0167-2738(81)90138-7Search in Google Scholar
[44] T.Sato, T.Endo, M.Shimada: J. Mater. Sci.26 (1991) 1346.10.1007/BF00544475Search in Google Scholar
[45] S.Lawson: J. Eur. Cer. Soc.15 (1995) 485.10.1016/0955-2219(95)00035-SSearch in Google Scholar
[46] M.Herrmann, B.Seipel, J.Schilm, K.G.Nickel, G.Michael, A.Krell: J. Eur. Ceram. Soc.25 (2005) 1805.10.1016/j.jeurceramsoc.2004.12.009Search in Google Scholar
[47] F.Shojai, T.A.Mäntylä: J. Eur. Ceram. Soc.21 (2001) 37.10.1016/S0955-2219(00)00163-1Search in Google Scholar
[48] F.F.Lange, G.L.Dunlop, B.I.Davis: J. Am. Ceram. Soc.69 (1986) 237.10.1111/j.1151-2916.1986.tb07415.xSearch in Google Scholar
[49] T.Sato, M.Shimada: J. Am. Ceram. Soc.68 (1985) 356.10.1111/j.1151-2916.1985.tb15239.xSearch in Google Scholar
[50] T.Sato, S.Ohtaki, M.Shimada: J. Mater. Sci.20 (1985) 1466.10.1007/BF01026344Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial January 2012
- Original Contributions
- High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
- Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
- Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
- Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
- Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
- Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
- Influence of creep and cyclic oxidation in thermal barrier coatings
- Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
- Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
- Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
- Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
- Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
- Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
- Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
- Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
- Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial January 2012
- Original Contributions
- High-strength aluminum-based light-weight materials for safety components – recent progress by microstructural refinement and particle reinforcement
- Microstructure – deformation relationships in fine grained high manganese TWIP steel – the role of local texture
- Microstructure of a eutectic NiAl—Mo alloy directionally solidified using an industrial scale and a laboratory scale Bridgman furnace
- Effect of Si addition on the oxidation resistance of Co–Re–Cr-alloys: Recent attainments in the development of novel alloys
- Corrosion behavior of silicon oxycarbide-based ceramic nanocomposites under hydrothermal conditions
- Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation
- Influence of creep and cyclic oxidation in thermal barrier coatings
- Residual stress states as a result of bending and straightening processes of steels in different heat treatment conditions
- Residual stresses under quasi-static and cyclic loading in shot peened Inconel 718
- Investigation of the surface residual stresses in spray cooled induction hardened gearwheels
- Stress-gradient induced fatigue at ultra high frequencies in sub micron thin metal films
- Influence of graphite spherical size on fatigue behaviour and fracture toughness of ductile cast iron EN-GJS-400-18LT
- Failure behaviour of the superalloy MAR-M247 LC under LCF, HCF and combined LCF/HCF loading
- Measuring techniques for the very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies
- Failure limits of continuous carbon fibre reinforced plastics loaded with fibre parallel compression
- Development of an integrative simulation method to predict the microstructural influence on the mechanical behaviour of semi-crystalline thermoplastic parts
- DGM News
- DGM News