Soft lithography detects partial mechano-sensoric blindness to micrometre topography in cultured aged and diseased cells
-
Dieter Kaufmann
, Yi Su , Sarah Biela , Simon Jungbauer , Joachim P. Spatz and Ralf Kemkemer
Abstract
Cells sense their physical environment and translate mechanical forces or geometries into biochemical signals enabling them to adapt to cues in their surroundings. In this in-vitro study, cell responses to surface topography were investigated in human fibroblasts from differently old donors and in fibroblasts from patients with a common tumour-associated genetic disorder, Neurofibromatosis 1 (NF1). As a response indicator we systematically examined the mean cell orientation along micro-structured grooves with heights of 100 and 200 nm. Fibroblasts from aged donors (> 30 years) and NF1 patients were significantly less affected by the topography than those from young and healthy donors (< 30 years). The results suggest that mechano-transduction can be altered by ageing and genetic disease resulting in a partial mechano-sensoric cellular blindness.
References
[1] B.Alberts, A.Johnson, J.Lewis, M.Raff, K.Roberts, P.Walter: Molecular Biology Of the Cell: Reference Edition, Garland Science, 2008.10.1201/9780203833445Search in Google Scholar
[2] S.Tee, A.Bausch, P.Janmey: Curr. Biol.19 (2009) 745–748.10.1016/j.cub.2009.06.034Search in Google Scholar
[3] V.Vogel, M.Sheetz: Nat. Rev. Mol. Cell Biol.7 (2006) 265–275.10.1038/nrm1890Search in Google Scholar
[4] D.Hoffman-Kim, J.A.Mitchel, R.V.Bellamkonda: Annu. Rev. Biomed. Eng.12 (2010) 203–231.10.1146/annurev-bioeng-070909-105351Search in Google Scholar
[5] M.J.Dalby, M.O.Riehle, S.J.Yarwood, C.D.W.Wilkinson, A.S.G.Curtis: Exp. Cell Res.284 (2003) 274–282.10.1016/S0014-4827(02)00053-8Search in Google Scholar
[6] C.J.Bettinger, R.Langer, J.T.Borenstein: Angew. Chem. Int. Ed. Engl.48 (2009) 5406–5415.10.1002/anie.200805179Search in Google Scholar PubMed PubMed Central
[7] M.J.Dalby: Med. Eng. Phys.27 (2005) 730–742.10.1016/j.medengphy.2005.04.005Search in Google Scholar PubMed
[8] J.L.Charest, A.J.García, W.P.King: Biomaterials28 (2007) 2202–2210.10.1016/j.biomaterials.2007.01.020Search in Google Scholar PubMed
[9] Y.Xia, G.M.Whitesides: Annu. Rev. Mater. Sci.28 (1998) 153–184.10.1146/annurev.matsci.28.1.153Search in Google Scholar
[10] R.Kemkemer, S.Jungbauer, D.Kaufmann, H.Gruler: Biophys. J.90 (2006) 4701–4711.10.1529/biophysj.105.067967Search in Google Scholar PubMed PubMed Central
[11] S.A.Biela, Y.Su, J.P.Spatz, R.Kemkemer: Acta Biomater.5 (2009) 2460–2466.10.1016/j.actbio.2009.04.003Search in Google Scholar PubMed
[12] E.K.F.Yim, S.W.Pang, K.W.Leong: Exp. Cell Res.313 (2007) 1820–1829.10.1016/j.yexcr.2007.02.031Search in Google Scholar PubMed PubMed Central
[13] A.Ferrari, M.Cecchini, A.Dhawan, S.Micera, I.Tonazzini, R.Stabile, D.Pisignano, F.Beltram: Nano Lett.11 (2011) 505–511.10.1021/nl103349sSearch in Google Scholar PubMed
[14] M.J.Dalby, N.Gadegaard, R.Tare, A.Andar, M.O.Riehle, P.Herzyk, C.D.Wilkinson, R.O.Oreffo: Nat. Mater.6 (2007) 997–1003.10.1038/nmat2013Search in Google Scholar PubMed
[15] N.-G.Larsson: Annu. Rev. Biochem.79 (2010) 683–706.10.1146/annurev-biochem-060408-093701Search in Google Scholar PubMed
[16] B.Schumacher, G.Garinis, J.H.J.Hoeijmakers: Trends Genet. TIG24 (2008) 77–85.10.1016/j.tig.2007.11.004Search in Google Scholar PubMed
[17] R.Bahar, C.H.Hartmann, K.Rodriguez, A.D.Denny, R.Busuttil, M.E.T.Dollé, R.B.Calder, G.B.Chisholm, B.H.Pollock, C.Klein, J.Vijg: Nature441 (2006) 1011–1014.10.1038/nature04844Search in Google Scholar PubMed
[18] F.Boraldi, L.Bini, S.Liberatori, A.Armini, V.Pallini, R.Tiozzo, I.Pasquali-Ronchetti, D.Quaglino: Proteomics3 (2003) 917–929.10.1002/pmic.200300386Search in Google Scholar PubMed
[19] K.P.Boyd, B.R.Korf, A.Theos: J. Am. Acad. Dermatol.61 (2009) 1–14; quiz 15–6.10.1016/j.jaad.2008.12.051Search in Google Scholar PubMed PubMed Central
[20] D.Kaufmann: Neurofibromatoses, Monographs, Karger, Basel, 2008.10.1159/isbn.978-3-8055-8521-7Search in Google Scholar
[21] D.E.Jaalouk, J.Lammerding: Nat. Rev. Mol. Cell Biol.10 (2009) 63–73.10.1038/nrm2597Search in Google Scholar PubMed PubMed Central
[22] D.Butcher, T.Alliston, V.Weaver: Nat. Rev. Cancer9 (2009) 108–122.10.1038/nrc2544Search in Google Scholar PubMed PubMed Central
[23] D.Jaalouk, J.Lammerding: Nat. Rev. Mol. Cell Biol.10 (2009) 63.10.1038/nrm2597Search in Google Scholar
[24] D.E.Ingber: Ann. Med.35 (2003) 564–577.10.1080/07853890310016333Search in Google Scholar PubMed
[25] G.Bao, S.Suresh: Nat. Mat.2 (2003) 715–25.10.1038/nmat1001Search in Google Scholar PubMed
[26] A.M.Goldyn, B.A.Rioja, J.P.Spatz, C.Ballestrem, R.Kemkemer: J. Cell Sci.122 (2009) 3644–3651.10.1242/jcs.054866Search in Google Scholar PubMed PubMed Central
[27] R.Kemkemer, C.Neidlinger-Wilke, L.Claes, H.Gruler: Cell Biochem. Biophys.30 (1999) 167–192.10.1007/BF02738066Search in Google Scholar PubMed
[28] A.I.Teixeira, G.McKie, J.D.Foley, P.J.Bertics, P.F.Nealey, C.J.Murphy: Biomaterials27 (2006) 3945–3954.10.1016/j.biomaterials.2006.01.044Search in Google Scholar PubMed PubMed Central
[29] T.K.Berdyyeva, C.D.Woodworth, I.Sokolov: Phys. Med. Biol.50 (2005) 81–92.10.1088/0031-9155/50/1/007Search in Google Scholar PubMed
[30] C.Schulze, F.Wetzel, T.Kueper, A.Malsen, G.Muhr, S.Jaspers, T.Blatt, K.-P.Wittern, H.Wenck, J.A.Käs: Biophys. J.99 (2010) 2434–2442.10.1016/j.bpj.2010.08.026Search in Google Scholar PubMed PubMed Central
[31] J.H.Wang, B.Li: Sports Med. Arthrosc. Rehabil. Ther. Technol.2 (2010) 16.10.1186/1758-2555-2-16Search in Google Scholar PubMed PubMed Central
[32] S.M.Nauli, F.J.Alenghat, Y.Luo, E.Williams, P.Vassilev, X.Li, A.E.H.Elia, W.Lu, E.M.Brown, S.J.Quinn, D.E.Ingber, J.Zhou: Nat. Genet.33 (2003) 129–137.10.1038/ng1076Search in Google Scholar PubMed
[33] V.L.R.M.Verstraeten, J.Y.Ji, K.S.Cummings, R.T.Lee, J.Lammerding: Aging Cell7 (2008) 383–393.10.1111/j.1474-9726.2008.00382.xSearch in Google Scholar PubMed PubMed Central
[34] S.L.Carroll, N.Ratner: Glia1605 (2008) 1590–1605.10.1002/glia.20776Search in Google Scholar PubMed PubMed Central
[35] R.Kemkemer, S.Schrank, W.Vogel, H.Gruler, D.Kaufmann: Proc. Natl. Acad. Sci. U.S.A.99 (2002) 13783.10.1073/pnas.212386999Search in Google Scholar PubMed PubMed Central
[36] S.Jungbauer, R.Kemkemer, H.Gruler, D.Kaufmann, J.P.Spatz: Chemphyschem5 (2004) 85–92.10.1002/cphc.200300868Search in Google Scholar PubMed
[37] S.D.Schepper, J.Boucneau, J.Lambert, L.Messiaen, J.-M.Naeya-rum;ert: Cell (2004) 13–24.Search in Google Scholar
[38] D.Kaufmann, S.Wiandt, J.Veser, W.Krone: Human Genet.87 (1991) 144–150.10.1007/BF00204170Search in Google Scholar PubMed
[39] D.H.Gutmann, Y.L.Wu, N.M.Hedrick, Y.Zhu, A.Guha, L.F.Parada: Human Mol. Genet.10 (2001) 3009–3016.10.1093/hmg/10.26.3009Search in Google Scholar PubMed
[40] F.Kweh, M.Zheng, E.Kurenova, M.Wallace, V.Golubovskaya, W.Cance: Mol. Carcinog.48 (2009) 1005–1017.10.1002/mc.20552Search in Google Scholar PubMed PubMed Central
[41] E.A.Lasater, F.Li, W.K.Bessler, M.L.Estes, S.Vemula, C.M.Hingtgen, M.C.Dinauer, R.Kapur, S.J.Conway, D.A.IngramJr: J. Clin. Invest.120 (2010) 859.10.1172/JCI41443Search in Google Scholar PubMed PubMed Central
[42] A.Trovó-Marqui, E.Tajara: Clinical Genet.70 (2006) 1–13.10.1111/j.1399-0004.2006.00639.xSearch in Google Scholar PubMed
[43] S.Welti, S.Kühn, I.D'Angelo, B.Brügger, D.Kaufmann, K.Scheffzek: Hum. Mutat.32 (2011) 191–197.10.1002/humu.21405Search in Google Scholar PubMed
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Max Planck Institute for Metals Research – 90 Years of Excellence in Materials Science
- Words of Welcome
- Words of Welcome
- Feature
- Magnetism studied with circularly polarized X-rays
- Solid state phase transformation kinetics: Evaluation of the modular transformation model
- Intelligent induction of active biosystem responses at interfaces
- Empirical Inference
- The Stuttgart Center for Electron Microscopy at the Max Planck Institute for Metals Research
- The filamentary growth of metals
- Kinetics of interface-controlled phase transformations: atomistic and mesoscopic simulations
- Breakthroughs in understanding elastic grain interaction and whisker formation made possible by advances in X-ray powder diffraction
- Ordered and disordered states in NiAs/Ni2In-type Ni1+δSn: Crystallography and order formation
- Of fluctuations and cross-correlations: finding order in disorder
- Experimental characterization of tumor spheroids for studies of the energetics of tumor growth
- Soft lithography detects partial mechano-sensoric blindness to micrometre topography in cultured aged and diseased cells
- The sweet coat of living cells – from supramolecular structure and dynamics to biological function
- Nonlinear spectroscopy of bio-interfaces
- Dedicated beamlines for in-situ investigations of materials in reduced dimensions
- People
- Laudationes
- Review
- Book review
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Max Planck Institute for Metals Research – 90 Years of Excellence in Materials Science
- Words of Welcome
- Words of Welcome
- Feature
- Magnetism studied with circularly polarized X-rays
- Solid state phase transformation kinetics: Evaluation of the modular transformation model
- Intelligent induction of active biosystem responses at interfaces
- Empirical Inference
- The Stuttgart Center for Electron Microscopy at the Max Planck Institute for Metals Research
- The filamentary growth of metals
- Kinetics of interface-controlled phase transformations: atomistic and mesoscopic simulations
- Breakthroughs in understanding elastic grain interaction and whisker formation made possible by advances in X-ray powder diffraction
- Ordered and disordered states in NiAs/Ni2In-type Ni1+δSn: Crystallography and order formation
- Of fluctuations and cross-correlations: finding order in disorder
- Experimental characterization of tumor spheroids for studies of the energetics of tumor growth
- Soft lithography detects partial mechano-sensoric blindness to micrometre topography in cultured aged and diseased cells
- The sweet coat of living cells – from supramolecular structure and dynamics to biological function
- Nonlinear spectroscopy of bio-interfaces
- Dedicated beamlines for in-situ investigations of materials in reduced dimensions
- People
- Laudationes
- Review
- Book review
- DGM News
- DGM News