Home Early detection of crack initiation sites in TiAl alloys during low-cycle fatigue at high temperatures utilizing digital image correlation
Article
Licensed
Unlicensed Requires Authentication

Early detection of crack initiation sites in TiAl alloys during low-cycle fatigue at high temperatures utilizing digital image correlation

  • Thomas Niendorf , Christian Burs , Demircan Canadinc and Hans J. Maier
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Fatigue-induced damage accumulation was investigated in a third generation titanium aluminide alloy both at room temperature and at a temperature of 700 °C promoting oxidation. The digital image correlation technique was utilized for monitoring the evolution of local strain fields with cyclic deformation at both temperatures. With the aid of a newly adopted surface patterning technique, digital image correlation successfully detected the crack initiation sites prior to the actual formation of the cracks. Despite the oxidation at elevated temperatures, digital image correlation could detect the crack initiation sites at the early stages of the cyclic deformation, laying out the potential of this technique for monitoring the damage evolution in various metallic materials under severe service conditions.


* Correspondence address, Prof. Dr.-Ing. H. J. Maier, University of Paderborn, Lehrstuhl für Werkstoffkunde (Materials Science), Pohlweg 47 – 49, D-33098 Paderborn, Germany, Tel.: +49 5251 60 38 55, Fax: +49 5251 60 38 54, E-mail:

References

[1] F.Appel, R.Wagner: Mater. Sci. Eng. R22 (1998) 187.Search in Google Scholar

[2] O.Berteaux, M.Jouiad, M.Thomas, G.Hénaff: Intermetallics14 (2006) 1130.Search in Google Scholar

[3] V.Recina, B.Karlsson: Mater. Sci. Eng. A262 (1999) 70.Search in Google Scholar

[4] S.K.Jha, J.M.Larsen, A.H.Rosenberger: Acta Mater.53 (2005) 1293.Search in Google Scholar

[5] W.E.Voice, M.Henderson, E.F.J.Shelton, X.Wu: Intermetallics13 (2005) 959.Search in Google Scholar

[6] S.K.Planck, A.H.Rosenberger: Mater. Sci. Eng. A325 (2002) 270.Search in Google Scholar

[7] F.Appel, M.Oehring, in: M.Peters, C.Leyens (Eds.), Titan und Titanlegierungen, Wiley-VCH, Weinheim (2002) 39.Search in Google Scholar

[8] M.Roth, H.Biermann: Int. J. Fatigue30 (2008) 352.Search in Google Scholar

[9] H.J.Christ, F.O.R.Fischer, H.J.Maier: Mater. Sci. Eng. A319 (2001) 625.Search in Google Scholar

[10] H.J.Maier, F.O.R.Fischer, H.J.Christ, in: M.A.McGaw, S.Kalluri, J.Bressers, S.D.Peteves (Eds.), Thermo-Mechanical Fatigue Behavior of Materials: Fourth Volume ASTM STP 1428, ASTM International (2002) 127.Search in Google Scholar

[11] F.O.R.Fischer, H.J.Maier, H.J.Christ, in: I.V.Gorynin, S.S.Ushkov (Eds.), Titanium'99: Science and Technology, Vol. 2, CRISM (2000) 820.Search in Google Scholar

[12] K.Tokaji, H.Shiota, M.Nemura: Mater. Sci. Eng. A268 (1999) 63.Search in Google Scholar

[13] W.T.Marketz, F.D.Fischer, H.Clemens: Int. J. Plast.19 (2003) 281.Search in Google Scholar

[14] H.J.Maier, R.G.Teteruk, H.J.Christ: Met. Mater. Trans. A31 (2000) 431.Search in Google Scholar

[15] D.Häussler, U.Messerschmidt, M.Bartsch, F.Appel, R.Wagner: Mater. Sci. Eng. A233 (1997) 15.Search in Google Scholar

[16] K.Gall, G.Biallas, H.J.Maier, M.F.Horstemeyer, D.L.McDowell: Mater. Sci. Eng. A396 (2005) 143.Search in Google Scholar

[17] G.Biallas, H.J.Maier: Int. J. Fatigue29 (2007) 1413.Search in Google Scholar

[18] T.Niendorf, J.Dadda, D.Canadinc, H.J.Maier, I.Karaman: Mater. Sci. Eng. A submitted 2008.Search in Google Scholar

[19] B.Ebel-Wolf, F.Walther, D.Eifler: Int. J. Mat. Res.98 (2007) 117.Search in Google Scholar

[20] B.A.Simkin, M.A.Crimp, T.R.Bieler: Intermetallics15 (2007) 55.Search in Google Scholar

[21] C.Leyens, in: M.Peters, C.Leyens (Eds.), Titan und Titanlegierungen, Wiley-VCH, Weinheim (2002) 197.Search in Google Scholar

[22] P.Schallow: Fortschritt-Berichte VDI, Reihe 5 Nr.707 (2005).Search in Google Scholar

Received: 2008-9-3
Accepted: 2009-1-19
Published Online: 2013-06-11
Published in Print: 2009-04-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Prof. Dr. Günter Gottstein
  5. Feature
  6. Interface Migration in Metals (IMM):“Vingt Ans Après” (Twenty Years Later)
  7. Basic
  8. On the solute-defect interaction in the framework of a defactant concept
  9. A new model of dynamic recovery for Stage III of pure fcc metals without cross slip
  10. Sequence of distinct microyielding stages of the monocrystalline nickel-base superalloy CMSX-6 at high temperatures
  11. Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes
  12. Recrystallization initiated by low-temperature grain boundary motion coupled to stress
  13. Sub-grain boundary mobilities during recovery of binary Al–Mn alloys
  14. Concentration phase transition associated with grain boundary segregation in systems with restricted solubility
  15. Second-order faceting–roughening of the tilt grain boundary in zinc
  16. A model of grain boundary diffusion in polycrystals with evolving microstructure
  17. Linear measures for polyhedral networks
  18. Testing a curvature driven moving finite element grain growth model with the generalized three dimensional von Neumann relation
  19. Grain-boundary source/sink behavior for point defects: An atomistic simulation study
  20. Applied
  21. Deformation modes and anisotropy in magnesium alloy AZ31
  22. Control of recrystallisation texture and texture-related properties in industrial production of aluminium sheet
  23. The combined effect of static recrystallization and twinning on texture in magnesium alloys AM30 and AZ31
  24. Comparison of damage development depending on the local microstructure in low alloyed Al-TRIP-steels, IF steel and a DP steel
  25. Nanoindentation of Ti50Ni48Fe2 and Ti50Ni40Cu10 shape memory alloys
  26. Early detection of crack initiation sites in TiAl alloys during low-cycle fatigue at high temperatures utilizing digital image correlation
  27. Superplastic failure mode in ultrafine grained magnesium alloy AZ31
  28. High temperature magnetic strengthening in iron-based alloys: Magnetic effects on deformation and fracture, revisited
  29. Notification
  30. DGM News
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110064/html?srsltid=AfmBOooMyGTXPAQDbFz-Lku26vmmDBa_t5msyJGH5zPbHO4Hid3JbwCV
Scroll to top button