Home Experimental study on penetration characteristic of submerged steam jet in quiescent water
Article
Licensed
Unlicensed Requires Authentication

Experimental study on penetration characteristic of submerged steam jet in quiescent water

  • L. Sun , E.-B. Shi , Ch. Wang and R. Hao
Published/Copyright: April 12, 2019
Become an author with De Gruyter Brill

Abstract

The direct contact condensation is an effective way to rapid depressurization for light water reactor, such as pressure suppression pool, for which the characteristic of steam plume is a key parameter to evaluate the efficiency of depressurization. In this paper, a series of visualization experiments are described which investigate the characteristic of steam plume, the influence of jetting direction, air mass fraction, water temperature, diameter of jet on the steam plume were analyzed. The results show that, the dimensionless steam plume length increased with the increase of inlet pressure and water temperature for pure steam submerged jet, a correlation was set up to predict the dimensionless penetration length and the predicted errors were within the band of ±15%. Furthermore, the penetration length decreased with the rise of air mass fraction due to buoyancy force, the penetration length increased with the increase of inlet pressure, and the jet penetration length for vertical jet is longer than horizontal jet about 25% at the same inlet pressure and air mass fraction.

Kurzfassung

Die Direktkondensation ist ein effektiver Weg zur schnellen Druckentlastung in Leichtwasserreaktoren, wie z.B. in Druckabbaubecken, bei denen die Charakteristik der Dampffahne ein Schlüsselparameter zur Beurteilung der Effizienz der Druckentlastung ist. In diesem Beitrag wird eine Reihe von Visualisierungsexperimenten beschrieben, die die Charakteristik der Dampffahne, den Einfluss der Strahlrichtung, den Luftmassenanteil, die Wassertemperatur, den Durchmesser des Strahls auf die Dampffahne untersuchen. Die Ergebnisse zeigen, dass die dimensionslose Dampffahnenlänge mit zunehmendem Eingangsdruck und erhöhter Wassertemperatur für den Reindampfstrahl zunahm, eine Korrelation zur Vorhersage der dimensionslosen Eindringlänge hergestellt wurde und die vorhergesagten Fehler im Bereich von ±15% lagen. Darüber hinaus verringerte sich die Eindringlänge mit zunehmendem Luftmassenanteil aufgrund der Auftriebskraft, die Eindringlänge nahm mit zunehmendem Eingangsdruck zu, und die Eindringlänge für den Vertikalstrahl ist länger als der Horizontalstrahl bei gleichem Eingangsdruck und Luftmassenanteil um 25%.


* E-mail:

References

1 Park, C. K.; Song, C.-H.: Influence of key parameters on the APR1400 in-containment refueling water storage tank hydrodynamic loads. Journal of Nuclear Science and Technology40 (2003) 82082610.1080/18811248.2003.9715424Search in Google Scholar

2 GE Hitachi Nuclear Energy: ESBWR_General Description Book. 2011Search in Google Scholar

3 Chong, D.; Zhao, Q.; Yuan, F.; Cong, Y.; Chen, W.; Yan, J.: Experimental and theoretical study on the second dominant frequency in submerged steam jet condensation. Experimental Thermal and Fluid Science68 (2015) 74475810.1016%2Fj.expthermflusci.2015.07.011Search in Google Scholar

4 Qiu, B.; Tang, S.; Yan, J.; Liu, J.; Chong, D.; Wu, X.: Experimental investigation on pressure oscillations caused by direct contact condensation of sonic steam jet. Experimental Thermal and Fluid Science52 (2014) 27027710.1016/j.expthermflusci.2013.09.020Search in Google Scholar

5 Zhao, Q.; Chen, W.; Yuan, F.; Wang, W.; Chong, D.; Yan, J.: Pressure oscillation and steam cavity during the condensation of a submerged steam jet. Annals of Nuclear Energy85 (2015) 51252210.1016/j.anucene.2015.05.032Search in Google Scholar

6 Harby, K.; Chiva, S.; Muñoz-Cobo, J. L.: Modelling and experimental investigation of horizontal buoyant gas jets injected into stagnant uniform ambient liquid. International Journal of Multiphase Flow93 (2017) 334710.1016/j.ijmultiphaseflow.2017.03.008Search in Google Scholar

7 Cai, J.; Jo, B.; Erkan, N.; Okamoto, K.: Effect of non-condensable gas on thermal stratification and flow patterns in suppression pool. Nuclear Engineering and Design300 (2016) 11712610.1016%2Fj.nucengdes.2016.01.022Search in Google Scholar

8 Liang, K.-S.; Griffith, P.: Experimental and analytical study of direct contact condensation of steam in water. Nuclear Engineering and Design147 (1994) 42543510.1016/0029-5493(94)90225-9Search in Google Scholar

Received: 2019-03-12
Published Online: 2019-04-12
Published in Print: 2019-04-15

© 2019, Carl Hanser Verlag, München

Downloaded on 1.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.190036/html
Scroll to top button