Home Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET
Article
Licensed
Unlicensed Requires Authentication

Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET

  • A. Hoffmann , B. Merk , T. Hirsch and R. Pitz-Paal
Published/Copyright: June 24, 2014
Become an author with De Gruyter Brill

Abstract

In the present feasibility study the system code ATHLET, which originates from nuclear engineering, is applied to a parabolic trough test facility. A model of the DISS (DIrect Solar Steam) test facility at Plataforma Solar de Almería in Spain is assembled and the results of the simulations are compared to measured data and the simulation results of the Modelica library “DissDyn”. A profound comparison between ATHLET Mod 3.0 Cycle A and the “DissDyn” library reveals the capabilities of these codes. The calculated mass and energy balance in the ATHLET simulations are in good agreement with the results of the measurements and confirm the applicability for thermodynamic simulations of DSG processes in principle. Supplementary, the capabilities of the 6-equation model with transient momentum balances in ATHLET are used to study the slip between liquid and gas phases and to investigate pressure wave oscillations after a sudden valve closure.

Kurzfassung

Die vorliegende Machbarkeitsstudie wendet den Systemcode ATHLET aus dem Fachgebiet der Nukleartechnik auf eine Versuchsanlage mit Parabolrinnenkollektoren an. Es wird ein Modell der DISS (DIrect Solar Steam) Versuchsanlage an der Plataforma Solar de Almería erstellt und die Simulationsergebnisse mit den Messdaten sowie den Simulationsergebnissen der Modelica Bibliothek “DissDyn” verglichen. Ein Vergleich zwischen ATHLET Mod 3.0 Cycle A und der “DissDyn” Bibliothek erörtert die Modellfähigkeiten der beiden Simulationswerkzeuge. Die berechneten Massen- und Energiebilanzen in ATHLET stimmen gut mit den Messergebnissen überein und bestätigen die prinzipielle Anwendbarkeit zur Simulation der Thermofluiddynamik eines DSG Prozesses. Ergänzend werden die Fähigkeiten des in ATHLET implementierten 6-Gleichungsmodells und die der zeitabhängigen Impulsbilanzen genutzt, um den Schlupf zwischen den Phasen und Druckwellenoszillationen nach dem plötzlichen Schließen eines Ventiles zu untersuchen.

References

1 Zarza, E.; Weyers, H. D.; Eck, M.; Hennecke, K.: The DISS project: Direct steam generation in parabolic troughs operation and maintenance experience update on project status, 2001. Proceedings of Solar Forum 2001 Solar Energy: The Power to Choose, Washington D.C.Search in Google Scholar

2 Feldhoff, J. F.; Benitez, D.; Eck, M.; Riffelmann, K.-J.: Economic potential of solar thermal power plants with direct steam generation compared with HTF plants. Journal of Solar Energy Engineering132 (2010), 041001.1041001.9Search in Google Scholar

3 Zarza, E.; Valenzuela, L.; León, J.; Hennecke, K.; Eck, M.; Weyers, H. D.; Eickhoff, M.: Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project. Journal of Energy29 (2004) 63564410.1016/S0360-5442(03)00172-5Search in Google Scholar

4 Eck, M.; Steinmann, W.: Direct steam generation in parabolic troughs: first results of the DISS project. Proceedings of Solar Forum 2001: Solar Energy: The Power to Choose, Washington D.C., 2001Search in Google Scholar

5 Lippke, F.: Direct steam generation in parabolic trough solar power plants: numerical investigation of the transients and the control of a once-through system. Journal of Solar Energy Engineering118 (1996) 91410.1115/1.2847958Search in Google Scholar

6 Odeh, S. D.: Direct Steam Generation Collectors for Solar Electric Generation Systems. PhD thesis, University of New South Wales, 1999Search in Google Scholar

7 Steinmann, W.-D.: Dynamik solarer Dampferzeuger. Fortschritt-Berichte VDI, Reihe 6, Nr. 467, 2001Search in Google Scholar

8 Hirsch, T.; Steinmann, W.; Eck, M.: Simulation of transient two-phase flow in parabolic trough collectors using Modelica. In Proceedings of the 4th International Modelica Conference (2005), pp. 403412. March, 7–8, Hamburg, GermanySearch in Google Scholar

9 Lobón, D.; Baglietto, E.; Valenzuela, L.; Zarza, E.: Modeling direct steam generation in solar collectors with multiphase CFD. Applied Energy113 (2014), 1338134810.1016/j.apenergy.2013.08.046Search in Google Scholar

10 Pye, J. D.: System modelling of the compact linear fresnel reflector. PhD thesis, University of New South Wales, 2008Search in Google Scholar

11 Goebel, O.: Wärmeübergang in Absorberrohren von Parabolrinnen-Solarkraftwerken. Fortschritt-Berichte VDI, Reihe 6, Nr. 402, 1998Search in Google Scholar

12 Moya, S. L.; Valenzuela, L.; Zarza, E.: Numerical study of the thermal-hydraulic behavior of water-steam flow in the absorber tube of the DISS system using RELAP. Concentrating solar power and chemical energy systems (SolarPACES), Granada, Spain, 2011Search in Google Scholar

13 You, C.; Zhang, W.; Yin, Z.: Modeling of fluid flow and heat transfer in trough solar collector. Applied Thermal Engineering54 (2013) 24725410.1016/j.applthermaleng.2013.01.046Search in Google Scholar

14 Lippke, F.: Numerische Simulation der Absorberdynamik von Parabolrinnen-Solarkraftwerken mit direkter Dampferzeugung. Fortschritt-Bericht VDI, Reihe 6, Nr. 307, 1994Search in Google Scholar

15 Hirsch, T.: Dynamische Systemsimulation und Auslegung des Abscheidesystems für die solare Direktverdampfung in Parabolrinnenkollektoren. Fortschritt-Berichte VDI, Reihe 6, Nr. 535, 2005Search in Google Scholar

16 Odeh, S. D.; Behnia, M.; Morrison, G. L.: Hydrodynamic analysis of direct steam generation solar collectors. Journal of Solar Energy Engineering – Transactions of the ASME122 (2000) 142210.1115/1.556273Search in Google Scholar

17 Dynasim AB : Dymola User Manual, version 5. 3a ed.Lund (Sweden), 2004Search in Google Scholar

18 Müller-Steinhagen, H.; Heck, K. A.: simple friction pressure drop correlation for two-phase flow in pipes. Chemical Engineering and Processing20 (1986), 29730810.1016/0255-2701(86)80008-3Search in Google Scholar

19 Winterton, R. H. S.: Where did the Dittus and Boelter equation come from?International Journal of Heat and Mass Transfer41 (1998) 80981010.1016/S0017-9310(97)00177-4Search in Google Scholar

20 Austregesilo, H.; Bals, C.; Hora, A.; Lerchl, G.; Romstedt, P.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Mod 3.0 Cylce A – Models and Methods. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, November 2012Search in Google Scholar

21 Lerchl, G.; Austregesilo, H.; Schöffel, P.; von der Cron, D.; Weyermann, F.: ATHLET Mod 3.0 Cycle A – User’s Manual. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, November 2012Search in Google Scholar

22 Lerchl, G.; Austregesilo, H.; Glaeser, H.; Hrubisko, M.; Luther, W.: ATHLET Mod 3.0 Cycle A – Validation. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, September 2012Search in Google Scholar

23 Collier, J. G.; Thome, J. R.: Convective boiling and condensation. Oxford University Press, 1996Search in Google Scholar

24 Martinelli, R. C.; Nelson, D. B.: Prediction of pressure drop during forced-circulation boiling of water. Transactions of the American Society of Mechanical Engineers70 (1948) 692702Search in Google Scholar

25 Chisholm, D.: Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer16 (1973) 34735810.1016/0017-9310(73)90063-XSearch in Google Scholar

26 Müller, W. C.: Fast and accurate water and steam properties programs for two-phase flow calculations. Nuclear Engineering and Design149 (1994) 44945810.1016/0029-5493(94)90310-7Search in Google Scholar

27 Friedel, L.: Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow. Drei R International 18, 7 (1979) 485491Search in Google Scholar

28 Beattie, D.H.: A note on the calculation of two-phase pressure losses. Nuclear Engineering and Design25 (1973) 395402Search in Google Scholar

29 Kastner, W.; Kefer, V.; Köhler, W.; Krätzer, W.: Wärmeübergang und Druckverlust in einseitig beheizten, geneigten und innenberippten Rohren. Tech. rep., Forschungsprogramm Energietechnik, Schlussbericht, Förderungsvorhaben BMFT-03E-6361-A, 1988Search in Google Scholar

30 Mayinger, F.: Zweiphasen-Rohrströmung. CZ-Chemie-Technik1 (1972), 712Search in Google Scholar

31 Schäfer, F.: Investigations of natural circulation instabilities in VVER-type reactors at LOCA conditions. In 4th International Symposium on Safety and Reliability Systems of PWRs/VVER (2001), pp. 94100. May 14–17, Brno, Czech RepublicSearch in Google Scholar

32 Schäfer, F.; Manera, A.: Investigation of flashing-induced instabilities at CIRCUS test facility with the code ATHLET. International Journal of Nuclear Energy Science and Technology2 (2006) 209218Search in Google Scholar

33 Paladino, D.; Huggenberger, M.; Schäfer, F.: Natural circulation characteristics at low pressure conditions – PANDA experiments and ATHLET simulations, 2008. Article ID 874969Search in Google Scholar

34 Bouré, J. A.; Bergles, A. E.; Tong, L. S.: Review of two-phase flow instability. Nuclear Engineering and Design25 (1973) 16519210.1016/0029-5493(73)90043-5Search in Google Scholar

35 DLR: http://www.dlr.de/media/desktopdefault.aspx/tabid-4987/8424_read-20582. DLR (CC-BY 3.0), accessed 15 November 2013Search in Google Scholar

Received: 2013-12-12
Published Online: 2014-06-24
Published in Print: 2014-06-26

© 2014, Carl Hanser Verlag, München

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110419/html
Scroll to top button