Home Technology CFD simulation of fibre material transport in a PWR core under loss of coolant conditions
Article
Licensed
Unlicensed Requires Authentication

CFD simulation of fibre material transport in a PWR core under loss of coolant conditions

  • T. Höhne , A. Grahn , S. Kliem and F.-P. Weiß
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

During a postulated cold leg LOCA with hot leg ECC injection, a limited amount of small fractions of the insulation material after passing the sump strainers can enter the upper plenum and can accumulate at the fuel element spacer grids, preferably at the uppermost grid level. This effect might affect the ECC flow into the core and could result in degradation of core cooling. The CFD simulations show that after starting the sump mode, the ECC water injected through the hot legs flows down into the core at so-called “brake through channels” located at the outer core region where the downward leg of the convection role had established. The hotter, lighter coolant rises in the center of the core. As a consequence, the insulation material is preferably deposited at the uppermost spacer grids positioned in the break through zones. This means that at the beginning the fibers are not uniformly deposited over the core cross section.

Kurzfassung

Ziel der numerischen Simulationen zum Eintrag von Mineralwolle in den Kern bei Sumpfbetrieb der Kernnotkühlung war der qualitative Nachweis der so genannten Durchbruchkanäle, die experimentell unter ähnlichen Randbedingungen an der Versuchsanlage UPTF beobachtet wurden und durch die das heißseitig eingespeiste Notkühlwasser in den Kern gelangt. Zunächst wurde ohne Belastung des Kühlmittels mit Isoliermaterial gerechnet, während weiterführende Rechnungen die teilweise Belegung der oberen Abstandshalterebene durch eingetragene Mineralwollfasern berücksichtigten. Dafür musste die Verteilung der Ablagerung der Mineralwollfasern auf der oberen Abstandshalterebene ermittelt werden. Die Rechnungen zeigen eine zunächst bevorzugte Ablagerung der Fasern im Bereich dieser Durchbruchkanäle.


* Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany. Tel.: +49 351 260 2425, E-mail:

References

1 OECD, ed. NRC/NEA: Workshop on debris impact on emergency coolant recirculation, no. 5468 in Proceedings of the OECD NEA 2004Search in Google Scholar

2 Grahn, A.; Krepper, E.; Alt, S.; Kästner, W.: Implementation of a strainer model for calculating the pressure drop across beds of compressible, fibrous materials. Nuclear Engineering and Design238 (2008) 25462553Search in Google Scholar

3 ANSYS CFX Solver Manual, CFX-12, 2009Search in Google Scholar

4 Rohde, U.; Höhne, T.; Kliem, S.; Hemström, B.; Scheuerer, M.; Toppila, T.; Aszodi, A.; Boros, I.; Farkas, I.; Muehlbauer, P.; Vyskocil, V.; Klepac, J.; Remis, J.; Dury, T.: Fluid mixing and flow distribution in a primary circuit of a nuclear pressurized water reactor – Validation of CFD codes. Nuclear Engineering and Design237 (2007) 16391655Search in Google Scholar

5 Hertlein, R.; Herr, W.: A new model for countercurrent flow in the upper part of a PWR core, NURETH-4, Karlsruhe October 1989, Proceedings Vol. 1, 8895Search in Google Scholar

6 Davies, C. N.: The Separation of Airborne Dust and Particles. Proc. Inst. Mech. Eng. 1, Part B (1952), 18519810.1177/095440545300100113Search in Google Scholar

7 Dullien, F. A. L.: Porous Media Fluid Transport and Pore Structure. Academic, New York, 197910.1016/B978-0-12-223650-1.50008-5Search in Google Scholar

8 Ergun, S.: Fluid Flow Through Packed Columns. Chemical Engineering Progress48 (1952), 8994Search in Google Scholar

9 Hindmarsh, A.et al.: (2008): {Odepack}, http://www.netlib.org/odepackSearch in Google Scholar

Received: 2010-10-11
Published Online: 2013-04-05
Published in Print: 2011-03-01

© 2011, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110136/pdf
Scroll to top button