Home Technology Modified UN method for the reflected critical slab problem with forward and backward scattering
Article
Licensed
Unlicensed Requires Authentication

Modified UN method for the reflected critical slab problem with forward and backward scattering

  • H. Öztürk
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The critical slab problem is investigated in one-speed neutron transport theory for reflecting boundary conditions using second kind Chebyshev polynomials approximation. The forward-backward-isotropic scattering kernel is used in a uniform homogeneous slab. The critical slab thicknesses for various values of the collision parameter, forward and backward scattering and reflection coefficient are given in the tables together with the ones available in literature and they are in good agreement.

Kurzfassung

Das Problem kritischer Platten wurde untersucht in der Eingruppen-Neutronentransporttheorie für reflektierende Randbedingungen mit Hilfe der Tschebyscheff-Polynome zweiter Art. Der vorwärts-rückwärts-isotrope Streukern wird in einem gleichförmig homogenen Stab verwendet. Die kritischen Stabdicken wurden für verschiedene Werte der Kollisionsparameter, der Vorwärts- und Rückwärtsstreuung und des Reflektionskoeffizienten berechnet und werden tabellarisch dargestellt zusammen mit den Literaturwerten, mit denen sie eine gute Übereinstimmung zeigen.

References

1 Conkie, W. R.: Polynomial approximations in neutron transport theory. Nucl. Sci. Eng.6 (1959) 260Search in Google Scholar

2 Aspelund, O.: On a new method for solving the (Boltzmann) equation in neutron transport theory. PICG16 (1958) 530Search in Google Scholar

3 Yabushita, S.: Tschebyscheff polynomials approximation method of the neutron transport equation. J. Math. Phys.2 (1961) 543Search in Google Scholar

4 Anlı, F.; Yaşa, F.; Güngör, S.; Öztürk, H.: TN approximation to neutron transport equation and application to critical slab problem. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 129Search in Google Scholar

5 Öztürk, H.; Anlı, F.; Güngör, S.: TN method for the critical thickness of one-speed neutrons in a slab with forward and backward scattering. J. Quant. Spectros. Radiat. Trans.105 (2007) 211Search in Google Scholar

6 Öztürk, H.; Anlı, F.; Güngör, S.: Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering. Kerntechnik72 (2007) 74Search in Google Scholar

7 Öztürk, H.: The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering. Kerntechnik73 (2008) 66Search in Google Scholar

8 Öztürk, H.: Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials. Kerntechnik73 (2008) 284Search in Google Scholar

9 Davison, B.: Neutron transport theory. London, Oxford University Press, 195810.1063/1.3062414Search in Google Scholar

10 Sahni, D. C.; Sjöstrand, N. G.; Garis, N. S.: Criticality and time eigenvalues for one-speed neutrons in a slab with forward and backward scattering. J. Phys. D: Appl. Phys.25 (1992) 1381Search in Google Scholar

11 Arfken, G.: Mathematical methods for physicists. London, Academic Press, Inc.: 1985Search in Google Scholar

12 Bell, G. I.; Glasstone, S.: Nuclear reactor theory. New York, VNR Company, 1972Search in Google Scholar

13 Atalay, M. A.: The reflected slab and sphere criticality problem with anisotropic scattering in one-speed neutron transport theory. Prog. Nucl. Energy31 (1997) 229Search in Google Scholar

14 Atalay, M. A.: Fourier mode analysis of reflected slab and sphere criticality. Prog. Nucl. Energy44 (2004) 25310.1016/S0149-1970(04)90013-3Search in Google Scholar

15 Lee, C. E.; Dias, M. P.: Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann. Nucl. Energy11 (1984) 515Search in Google Scholar

Received: 2010-10-5
Published Online: 2013-04-05
Published in Print: 2011-05-01

© 2011, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110126/pdf
Scroll to top button