Home Technology CFD simulation of thermal discharge behaviour in the Kadra reservoir at the Kaiga atomic power station
Article
Licensed
Unlicensed Requires Authentication

CFD simulation of thermal discharge behaviour in the Kadra reservoir at the Kaiga atomic power station

Part 1: Validation for 2 power plant units in operation
  • P. K. Sharma , P. Goyal , S. G. Markandeya and A. K. Ghosh
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The thermal pollution arising out of discharge of hot water from the power plant condensers into the natural water bodies such as rivers, lakes, reservoirs, oceans etc. has been a serious concern to environmentalists ever since the plants started operating world over. In the past forty to fifty years, the methods of calculations for predicting the velocity and temperature fields in the affected regions of the stagnant/flowing water bodies have undergone a significant improvement. Currently, use of Computational Fluid Dynamics (CFD) codes for performing these calculations is gaining popularity. However, several factors such as the assumed computational domain and its discretisation, the boundary conditions used, representation of hydrodynamic characteristics (laminar/turbulent, buoyant/non-buoyant), etc. have a strong influence on the accuracy of predictions by such a model. A CFD code STAR-CD has been used for analyzing the thermal plume behaviour in the Kadra reservoir at Kaiga Atomic Power Station (KAPS). The predictions from these calculations of two units in operation have been found to be in good agreement with the site data made available from earlier studies. The present paper briefly describes the model developed using STAR-CD and results obtained for the Kadra reservoir at KAPS.

Kurzfassung

Die Wärmebelastung durch die Ableitung von heißem Wasser aus den Kraftwerkskondensatoren in natürliche Gewässer, wie z.B. Flüsse, Seen, Reservoirs, Meere etc. ist ein ernstes Anliegen von Umweltschützern weltweit seit es Kraftwerke gibt. In den vergangenen 40–50 Jahren haben sich die Berechnungsmethoden zur Vorhersage der Geschwindigkeits- und Temperaturfelder in den betroffenen Regionen stark verbessert. Zur Zeit gewinnt die Verwendung von Computational Fluid Dynamics (CFD) Codes für diese Art Berechnungen immer mehr an Bedeutung. Verschiedene Faktoren, wie z.B. das angenommene Berechnungsgebiet und seine Diskretisierung, die verwendeten Randbedingungen, die Darstellung der hydrodynamischen Eigenschaften (laminar/turbulent, buoyant/nicht-buoyant), etc. haben einen starken Einfluss auf die Genauigkeit der Vorhersagen eines solchen Modells. Der CFD Code STAR-CD wurde verwendet zur Analyse des Verhaltens der Wärmeableitungen im Kadra Reservoir beim Kaiga Kernkraftwerk (KAPS). Die mit Hilfe dieser Berechnungen erhaltenen Vorhersagen für die beiden in Betrieb befindlichen Kraftwerkseinheiten stimmen gut überein mit den Daten vor Ort aus früheren Studien. Die vorliegende Arbeit beschreibt das mit Hilfe von STAR-CD entwickelte Modell und die für das Reservoir beim Kaiga Kernkraftwerk (KAPS) erhaltenen Ergebnisse.


* E-mail: ,

References

1 Harlemann, D. R. F.; Stolzenbach, K. D.: Fluid Mechanics of Heat Disposal From Power Generation., Annual Review of Fluid Mechanics4 (1972) 73210.1146/annurev.fl.04.010172.000255Search in Google Scholar

2 Barry, R. E.: Computer Model for Thermal Plume. Journal of the Power Division98 (1972) 11713210.1061/JPWEAM.0000692Search in Google Scholar

3 Öztürk, I.; Sarikaya, H. Z.; Aydin, A. F.; Demir, I.: A Simplified Model for Thermal Discharges. Water Sci. Tech.32 (1995) 183191Search in Google Scholar

4 Hamrick, J. M.; Mills, W. B.: Analysis of Water Temperatures in Conowingo Pond as Influenced by the Peach Bottom Atomic Power Plant Thermal Discharge. Environ. Sci. Policy3 (2000) 197209Search in Google Scholar

5 Akar, P. J.; Jirka, G. H.: CORMIX2: An Expert System for Hydrodynamic Mixing Zone Analysis of Conventional and Toxic Multiport Diffuser Discharges. U.S. Environmental Protection Agency, Athens, Ga., EPA/600/3-91/073 (1991)Search in Google Scholar

6 Lee, J. H. W.; Cheung, V.: Generalized Lagrangian Model for Buoyant Jets in Current, J. Environ. Eng-ASCE116 (1990) 1085110510.1061/(ASCE)0733-9372(1990)116:6(1085)Search in Google Scholar

7 Kim, D. G.; Seo, I. W.: Modeling the Mixing of Heated Water Discharged from a Submerged Multiport Diffuser. J. Hydro. Res.38 (2000) 259269Search in Google Scholar

8 Etemad-Shahidi, A.; Zoghi, M. J.; Saeedi, M.: An Alternative Data Driven Approach for Prediction of Thermal Discharge Initial Dilution using Tee Diffusers. Int. J. Environ. Sci. Tech.7 (2010) 2936Search in Google Scholar

9 Lin, F.; Hecker, G. E.; Smith, B. T.; Hopping, P. N.: Innovative 3-D Numerical Simulation of Thermal Discharge From Browns Ferry Multiport Diffusers, ASME Conf. Proc. (2003) 101, 10.1115/IJPGC2003-40105Search in Google Scholar

10 Suh, S. W.: A hybrid Near-Far Field Thermal discharge Model for Coastal areas. Marine Pollution Bulletin43 (2001) 225233Search in Google Scholar

11 Ravi, P. M.: BRNS Project on Thermal Ecological Studies at Kaiga Site – Annual Report, Dec. 2001 to Jan. 2002 (2002)Search in Google Scholar

12 STAR-CD Version 3.05 – Methodology, Computational Dynamics Limited (1998)Search in Google Scholar

13 Ravi, P. M.: BRNS Project on Thermal Ecological Studies at Kaiga Site – Annual Report, July 2000 to Dec. 2001Search in Google Scholar

14 Sharma, P. K.; Goyal, P.; Markandeya, S. G.; Ghosh, A. K.; Kushwaha, H. S.: Studies on Modelling of Thermal Plume Behaviour in the Kadra Reservior at the Kaiga Atomic Power Station, RSD, BARC, (2002)Search in Google Scholar

Received: 2010-9-21
Published Online: 2013-04-05
Published in Print: 2011-05-01

© 2011, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110122/pdf
Scroll to top button