Home Technology Efficiency of reflection coefficients in the isotropic neutron transport equation and computation of the critical-half thicknesses
Article
Licensed
Unlicensed Requires Authentication

Efficiency of reflection coefficients in the isotropic neutron transport equation and computation of the critical-half thicknesses

  • A. Bülbül , A. Kara and F. Anlı
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The critical slab problem of the reflected isotropic one-speed neutron transport equation is solved with the Chebyshev polynomial approximation. The efficiency of the reflection coefficient, R, in the neutron transport equation is obtained for different c values. For the solution, the Mark boundary condition is used. The values obtained from this approximation are compared with results obtained by the spherical harmonics method.

Kurzfassung

Das Kritikalitätsproblem der Eingruppen-Neutronentransportgleichung bei reflektierenden Randbedingungen und isotroper Streuung wird gelöst mit Hilfe von Tschebyscheff-Polynomen. Die Effizienz des Reflektionskoeffizienten R in der Neutronentransportgleichung wird für verschiedene c-Werte erhalten. Für die Lösung der Gleichung wird die Randbedingung nach Mark verwendet. Die aus dieser Näherung erhaltenen Werte werden verglichen mit Ergebnissen nach der Methode der sphärischen Harmonischen.


* E-mail:

References

1 Aspelund, O.: On a New Method for Solving the (Boltzmann) Equation in Neutron Transport Theory. PICG16 (1959) 530534Search in Google Scholar

2 Conkie, W. R.: Polynomial Approximations in Neutron Transport Theory. Nucl. Scie. Eng.6 (1959) 260266Search in Google Scholar

3 Yabushita, S.: Tschebyscheff Polynomial Approximation Method of the Neutron Transport Equation. Journ. of Math. Physics.2 (1961) 543549Search in Google Scholar

4 Garis, N. S.; Sjöstrand, N. G.: Eigenvalues for reflecting boundary conditions in one-speed Neutron Transport Theory. Ann. Nucl. Energy.21 (1994) 6780Search in Google Scholar

5 Sahni, D. C.; Garis, N. S.; Sjöstrand, N. G.: Trans. Theory Statist. Phys.24 (1995) 62965610.1080/00411459508206019Search in Google Scholar

6 Siewert, C. E.; Williams, M. M. R.: The effect of anisotropic scattering on the critical slab problem in neutron transport theory using a synthetic kernel. J. Phys. D: Appl. Phys.10 (1977) 20312040Search in Google Scholar

7 Anlı, F.; Yaşa, F.; Güngör, S.; Öztürk, H.: TN approximation to neutron transport equation and application to critical slab problem. J. Quant. Spectroscopy Radiat. Transfer.101 (2006) 129134Search in Google Scholar

8 Anlı, F.; Yaşa, F.; Güngör, S.; Öztürk, H.: TN approximation to reflected slab and computation of the critical half thickness. J. Quant. Spectroscopy Radiat. Transfer.101 (2006) 135140Search in Google Scholar

9 Ozturk, H.; Anlı, F.; Gungor, S.: Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering. Kerntechnik72 (2007) 7476Search in Google Scholar

10 Ozturk, H.: The reflected critical slab problem for one-speed neutrons with strongly anisotropic scattering, Kerntechnik73 (2008) 6674Search in Google Scholar

11 Szegö, G.: Orthogonal polynomials, American Society Providence, Rhode Island. 1967Search in Google Scholar

12 Case, K. M.; Zweifel, P. F.: Linear Transport Theory. Reading MA, Addison Wesley, 1967Search in Google Scholar

Received: 2009-1-19
Published Online: 2013-04-05
Published in Print: 2010-08-01

© 2010, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110081/pdf
Scroll to top button