Home Technology Numerical investigation of heat transfer in the vertical annulus between pressure tube and calandria tube of the advanced water cooled reactor
Article
Licensed
Unlicensed Requires Authentication

Numerical investigation of heat transfer in the vertical annulus between pressure tube and calandria tube of the advanced water cooled reactor

  • A. M. Vaidya , A. Borgohain , N. K. Maheshwari , D. Govindan and P. K. Vijayan
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

In advanced water cooled reactors, an annular gap exists between pressure tube and calandria tube. The gap is closed from top but is open from bottom. Due to differential temperature between pressure tube and calandria tube, air flow is induced by natural convection. This leads to heat transfer from pressure tube to calandria tube. The quantification of the heat transfer between pressure tube and calandria tube is numerically carried out with the help of the CFD code PHOENICS. Validation of the CFD code with experimental results and some established computational work from the literature has been done in order to verify the accuracy of the code. The natural convection phenomenon in the annular gap is then simulated. The velocity and temperature fields obtained from the CFD simulation are used to compute local and average heat transfer coefficients. Heat transfer coefficients for various pressure tube temperatures are computed. The effect of water on the heat transfer in the annular gas is also studied.

Kurzfassung

In fortgeschrittenen wassergekühlten Reaktoren besteht ein Ringspalt zwischen Druckrohr und Calandriarohr. Der Ringspalt ist von oben geschlossen, jedoch von unten offen. Durch die unterschiedliche Temperatur zwischen Druckrohr und Calandriarohr, wird ein Luftstrom durch natürliche Konvektion induziert. Dies führt zu einem Wärmetransfer vom Druckrohr zum Calandriarohr. Die Quantifizierung des Wärmetransfers zwischen Druckrohr und Calandriarohr wird numerisch mit Hilfe des CFD-Codes PHOENICS durchgeführt. Die Validierung des CFD-Codes mit experimentellen Ergebnissen und einigen etablierten Berechnungen aus der Literatur wurde durchgeführt, um die Genauigkeit des Codes zu überprüfen. Das Phänomen der natürlichen Konvektion im Ringspalt wurde entsprechend simuliert. Die aus der CFD-Simulation gewonnenen Geschwindigkeits- und Temperatur-Felder werden zur Berechnung lokaler und mittlerer Wärmetransferkoeffizienten eingesetzt. Wärmetransferkoeffizienten werden für verschiedene Druckrohrtemperaturen berechnet. Der Einfluss von Wasser auf den Wärmetransfer im ringförmigen Gasspalt wird ebenfalls untersucht.


* E-mail:

References

1 Sheriff, N.: Experimental investigation of natural convection in single and multiple vertical annuli with high pressure carbon dioxide. Proc. 3rd Int. Heat Tr. Conf., Chicago, vol. 2, 1966, pp. 132138Search in Google Scholar

2 Nagendra, H. R.; Tirunarayanan, M. A.; Ramachandran, A.: Free convection heat transfer in vertical annuli. Chemical Engineering Science25 (1970) 605Search in Google Scholar

3 Keyhani, M.; Kulacki, F. A.; Christensen, R. N.: Free convection in a vertical annulus with constant heat flux on the inner wall. J. Heat Transfer, Transactions of ASME105 (1983) 45410.1115/1.3245606Search in Google Scholar

4 Thomas, R. W.; de Vahl Davis, G.: Natural convection in annular and rectangular cavities, a numerical study. Proc. 4th Int. Heat Tr. Conf., Paris, vol. 4, Paper N.C. 2.4, Elsevier, Amsterdam, 197010.1615/IHTC4.3470Search in Google Scholar

5 PHOENICS Online Information System, Version 3.6.1, CHAM Ltd., 2006Search in Google Scholar

6 Patankar, S. V.: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980Search in Google Scholar

7 Raithby, G. D.; Hollands, K. G. T.; Unny, T. E.: Analysis of heat transfer by natural convection across vertical fluid layers. J. Heat Transactions of ASME, 99 (1977) 28710.1115/1.3450683Search in Google Scholar

8 Catton, I.: Natural convection in enclosures, Proc. 6th Int Heat Tr. Conf., Toronto, Canada, 6 (1978) 1331Search in Google Scholar

Received: 2009-12-10
Published Online: 2013-04-05
Published in Print: 2010-08-01

© 2010, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110078/pdf
Scroll to top button