Home Technology Design Concept of the High Performance Light Water Reactor
Article
Licensed
Unlicensed Requires Authentication

Design Concept of the High Performance Light Water Reactor

  • T. Schulenburg , D. Bittermann and J. Starflinger
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The “High Performance Light Water Reactor” (HPLWR) is a Light Water Reactor operating with supercritical water as coolant. At a pressure of 25 MPa in the core, water is heated up from 280 to 500 °C. For these conditions, the envisaged net plant efficiency is 43.5 %. The core design concept is based on a so-called “3-pass-core” in which the coolant is heated up in three subsequent steps. After each step, the coolant is mixed avoiding hot streaks possibly leading to unacceptable wall temperatures. The design of such a core comprises fuel assemblies containing 40 fuel rods and an inner and outer box for a better neutron moderation. Nine of these are assembled to a cluster with common head- and foot piece. The coolant is mixed inside an upper and inside a lower mixing chamber and leaves the reactor pressure vessel through a co-axial pipe, which protects the vessel wall against too high temperatures.

Kurzfassung

Der „High Performance Light Water Reactor“ (HPLWR) ist ein Leichtwasserreaktor mit überkritischem Wasser als Kühlmittel. Bei einem Druck von 25 MPa wird in seinem Kern Wasser von 280 auf 500 °C aufgeheizt. Der bei diesen Dampfparametern erwartete Kraftwerkswirkungsgrad liegt bei 43,5 %. Das Kerndesignkonzept des HPLWR besteht aus einem “3-Pass-Kern“, das bedeutet, dass das Kühlmittel schrittweise in 3 Stufen aufgeheizt wird, wobei nach einer Aufheizstufe eine Durchmischung heiße Strähnen verhindert, die zu unzulässig hohen Wandtemperaturen führen könnten. Die konstruktive Ausführung dieses Konzepts besteht aus Brennelementen mit 40 Stäben mit einem äußeren und einem innen Wasserkasten zur besseren neutronischen Moderation. Neun dieser Brennelemente sind in einem Cluster mit gemeinsamem Kopf- und Fußstück zusammengefasst. Das Kühlmittel wird in einem oberen und einem unteren Plenum gemischt und verlässt den Reaktordruckbehälter durch eine koaxiale Dampfleitung, die die Wand vor zu hohen Temperaturen schützt.

References

1 Starflinger, J.; Schulenberg, T.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama, J. A.; Anglart, H.; Aksan, N.; Ruzickova, M.; Heikinheimo, L.: European Research Activities within the Project: High Performance Light Water Reactor Phase 2 (HPLWR Phase 2), Proceedings of ICAPP '07, Nice, France, May 13–18, 2007, Paper 7146Search in Google Scholar

2 Bittermann, D.; Squarer, D.; Schulenberg, T.; Oka, Y.: “Economic Prospects of the HPLWR”, GENES4/ANP2003, Sep. 15–19, 2003, Kyoto, JAPAN Paper 1003Search in Google Scholar

3 Roelofs, F.; Van Heek, A.; Van Den Durpel, L.: GEN4 Market Share Scenarios with Focus on SCWR, 4th International Symposium on Supercritical Water-Cooled Reactors March 8–11, 2009, Heidelberg, Germany, Paper No. 51Search in Google Scholar

4 A Technology Roadmap for Generation IV Nuclear Energy systems, issued by the US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, GIF-002-00, December 2002, available at www.gen-4.orgSearch in Google Scholar

5 The Economic Modeling Working Group Of the Generation IV International Forum, “Cost estimating Guidelines for Generation IV Nuclear Energy Systems”, Revision 4.2, September 26, 2007 GIF/EMWG/2007/004, available at www.gen-4.orgSearch in Google Scholar

6 The Proliferation Resistance and Physical Protection Evaluation Methodology Expert Group Of the Generation IV International Forum “Evaluation Methodology for Proliferation Resistance and Physical Protection of Generation IV Nuclear Energy Systems” Revision 5, November 30, 2006, GIF/PRPPWG/2006/005, available at www.gen-4.orgSearch in Google Scholar

7 “Methodology for the assessment of innovative Nuclear Reactors and Fuel Cycles”, Report of Phase 1B (First Part) of the International Project Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEA, Vienna, 2004Search in Google Scholar

8 Schlagenhaufer, M.; Starflinger, J.; Schulenberg, T.: “Steam Cycle Analyses and Control of the HPLWR Plant” 4th International Symposium on Supercritical Water-Cooled Reactors March 8–11, 2009, Heidelberg, Germany, Paper No. 38.Search in Google Scholar

9 Hofmeister, J.; Waata, C.; Starflinger, J.; Schulenberg, T.; Laurien, E.: Fuel assembly design study for a reactor with supercritical water, Nuclear Engineering and Design237, (2007) 1513–1521 10.1016/j.nucengdes.2007.01.008Search in Google Scholar

10 Schulenberg, T.; Starflinger, J.; Heinecke, J.: Three pass core design proposal for a high performance light water reactor, Progress in Nuclear Energy50, (2008) 526–531 10.1016/j.pnucene.2007.11.038Search in Google Scholar

11 Himmel, S.; Class, A.; Laurien, E.; Schulenberg, T.: Determination of Mixing Coefficients in a Wire-Wrapped HPLWR Fuel Assembly using CFD, Proc. ICAPP '08, Anaheim, CA, USA, June 8–12, 2008, Paper 8053Search in Google Scholar

12 Kiss, A.; Laurien, E.; Aszódi, A.: Numerical Simulation of a HPLWR Fuel Assembly Flow with Wrapped Wire Spacers, Int. Students Workshop on High Performance Light Water Reactors, March 31 to April 3, 2008, Karlsruhe, GermanySearch in Google Scholar

13 Herbell, H.; Himmel, S.; Schulenberg, T.: Mechanical Analysis of an Assembly Box with Honeycomb Structure Designed for a High Performance Light Water Reactor, Int. Students Workshop on High Performance Light Water Reactors March 31 to April 3, 2008, Karlsruhe, GermanySearch in Google Scholar

14 Schlagenhaufer, M.; Vogt, B.; Schulenberg, T.: Reactivity Control Mechanisms for a HPLWR Fuel Assembly, Proc. GLOBAL 07, Boise, ID, USA, Sept. 9–13, 2007Search in Google Scholar

15 Fischer, K.; Schneider, T.; Redon, T.; Schulenberg, T.; Starflinger, J.: Mechanical Design of Core Components for a High Performance Light Water Reactor with a Three Pass Core, Proc. GLOBAL 07, Boise, ID, USA, Sept. 9–13, 2007Search in Google Scholar

16 Ortega Gomez, T.; Class, A.; Lahey, R. T.Jr.; Schulenberg, T.: Stability analysis of a uniformly heated channel with supercritical water, to be published in Nuclear Engineering and DesignSearch in Google Scholar

17 Wank, A.; Schulenberg, T.; Class, A.: Coolant Mixing in the Plenum of the HPLWR Three Pass Core, Proc. ICAPP '08, Anaheim, CA, USA, June 8–12, 2008, Paper 8100Search in Google Scholar

18 Köhly, C.; Schulenberg, T.: “Design Study for Fuel Replacement during an HPLWR Yearly Outage”, Int. Students Workshop on High Performance Light Water Reactors March 31 to April 3, 2008, Karlsruhe, GermanySearch in Google Scholar

19 Fischer, K.; Laurien, E.; Claas, A.; Schulenberg, T.: Design and Optimization of the Backflow Limiter for the High Performance Light Water Reactor, Proc. GLOBAL 07, Boise, ID, USA, Sept. 9–13, 2007Search in Google Scholar

20 Foulon, H.; Wank, A.; Schulenberg, T.: CFD Analysis of feedwater flow in the HPLWR pressure vessel, Int. Students Workshop on High Performance Light Water Reactors March 31 to April 3, 2008, Karlsruhe, GermanySearch in Google Scholar

21 Fischer, K.; Redon, T.; Millet, G.; Koehly, C.; Schulenberg, T.: Thermo-Mechanical Stress and Deformation Analysis of a HPLWR Pressure Vessel and Steam Plenum, Proc. ICAPP '08, Anaheim, CA, USA, June 8–12, 2008, Paper 8050Search in Google Scholar

Received: 2009-01-26
Published Online: 2013-04-05
Published in Print: 2009-04-01

© 2009, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110003/html
Scroll to top button