Home Technology Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials
Article
Licensed
Unlicensed Requires Authentication

Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials

  • H. Öztürk
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The effect of anisotropic scattering on the variation of the critical thickness for one-speed neutrons in a uniform finite slab has been studied using Marshak boundary conditions. Chebyshev polynomials of the second kind are used in the angular part of the neutron flux. The critical slab thicknesses are calculated for various values of collision and anisotropy parameters. Numerical results obtained by the present method for the critical thickness are presented in the tables together with the results obtained by Legendre polynomials approximation and the ones available in the literature for comparison.

Kurzfassung

Der Effekt anisotroper Streuung auf die Variation der kritischen Dicke für Eingruppen-Neutronen in einer gleichförmigen endlichen Platte wurde mit Hilfe der Marshak Randbedingungen untersucht. Tschebyscheff-Polynome zweiter Ordnung werden für den winkelabhängigen Teil des Neutronenflusses verwendet. Die Dicken der kritischen Platten werden berechnet für verschiedene Werte von Stoß- und Anisotropieparametern. Die mit Hilfe dieser Methode erhaltenen numerischen Ergebnisse für die kritische Dicke werden in tabellarischer Form vorgestellt zusammen mit den Ergebnissen von Näherungsrechnungen mit Legendre-Polynomen und mit den in der Literatur verfügbaren Werten zum Vergleich.

References

1 Conkie, W. R.: Polynomial approximations in neutron transport theory. Nucl. Sci. Eng.6 (1959) 260Search in Google Scholar

2 Yabushita, S.: Tschebyscheff polynomials approximation method of the neutron transport equation. J. Math. Phys.2 (1961) 543Search in Google Scholar

3 Aspelund, O.: On a new method for solving the (Boltzmann) equation in neutron transport theory. PICG16 (1958) 530Search in Google Scholar

4 Bell, G. I.; Glasstone, S.: Nuclear reactor theory. New York, VNR Company, 1972Search in Google Scholar

5 Sahni, D. C.; Sjöstrand, N. G.; Garis, N. S.: Criticality and time eigenvalues for one-speed neutrons in a slab with forward and backward scattering. J. Phys. D: Appl. Phys.25 (1992) 1381Search in Google Scholar

6 Arfken, G.: Mathematical methods for physicists. London, Academic Press, Inc.: 1985Search in Google Scholar

7 Davison, B.: Neutron transport theory. London, Oxford University Press, 195810.1063/1.3062414Search in Google Scholar

8 Lee, C. E.; Dias, M. P.: Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann. Nucl. Energy11 (1984) 515Search in Google Scholar

9 Dahl, E. B.; Sjöstrand, N. G.: Eigenvalue spectrum of multiplying slabs and spheres for monoenergetic neutrons with anisotropic scattering. Nucl. Sci. Eng.69 (1979) 114Search in Google Scholar

10 Aranson, R.: Critical problems for bare and reflected slabs and spheres. Nucl. Sci. Eng.86 (1984) 150Search in Google Scholar

Received: 2008-8-6
Published Online: 2013-04-05
Published in Print: 2008-11-01

© 2008, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100572/pdf?lang=en
Scroll to top button